DRAINAGE NARRATIVE AND ASSESSMENT
FOR
TOWER HILL LANDINGS ANNEX
2095 KINGSTOWN ROAD (ROUTE 108)
PLAT 32-4, LOT 32
SOUTH KINGSTOWN, RHODE ISLAND

AUGUST 2020

Prepared by: Crossman Engineering
Engineers & Surveyors
151 Centerville Road
Warwick, RI 02886

&

103 Commonwealth Ave
North Attleboro, MA 02763
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Project Description</td>
<td>1</td>
</tr>
<tr>
<td>2: Stormwater Management Standards</td>
<td>4</td>
</tr>
<tr>
<td>3: Appendix</td>
<td>16</td>
</tr>
<tr>
<td>B. Pre- and Post-Development Watershed Maps</td>
<td></td>
</tr>
<tr>
<td>C. Stormwater Runoff Calculations (HydroCAD)</td>
<td></td>
</tr>
<tr>
<td>D. RIDEM Environmental Resource Map</td>
<td></td>
</tr>
<tr>
<td>E. FEMA Flood Map</td>
<td></td>
</tr>
<tr>
<td>F. Soil Survey Map</td>
<td></td>
</tr>
<tr>
<td>G. Soil Evaluations</td>
<td></td>
</tr>
<tr>
<td>H. Wetland Delineation Report</td>
<td></td>
</tr>
<tr>
<td>I. 2016 Previous Design of “Dan’s Place” Grading and Drainage Plan (File #16-0120)</td>
<td></td>
</tr>
</tbody>
</table>
Section 1: Project Description

This Drainage Narrative and Assessment has been prepared for the Proposed Tower Hill Landings Annex buildings at 2095 Kingstown Road (Route 108) in South Kingstown, Rhode Island. The site is located on Assessor’s Plat Map 32-4, Lot 32 and falls within the Town’s Commercial Neighborhood Zone (CN), Medium High-Density Residential Zone (R10), and Kingstown Road Special Management District. The property is approximately 1.22 acres in size and categorized as a Redevelopment Project. The site currently consists of bituminous and gravel parking areas with perimeter lawn areas and overgrown vegetation. In 2015 the site was designed for the construction of a new restaurant establishment, Dan’s Place, but those plans never came to fruition after Environmental and Town Planning permitting phases. In June 2016 the site was issued an Insignificant Alteration (Preliminary Determination) Permit under Wetlands Application File No. 16-0120 and RIPDES No. RIR101307.

All three buildings previously on the property (the former Cucina Twist Restaurant building and two single family houses) have been demolished, and the property has remained vacant. The adjacent residential apartment facility, Tower Hill Landings, has purchased the property with the intent to expand the apartment complex onto Lot 32 pending Local and State permitting. The proposed improvements for the apartment complex expansion include two (2) new two-story apartment buildings with a total of two (2) two-bedroom units and 9 (9) four-bedrooms units. The project will remove the driveway connection to Kingstown Road and access to the new apartments shall extend off the existing apartment parking lot to the South of Lot 28. The Town expressed interest in having a porous/permeable parking area for recharge benefits, therefore, the new parking area is proposed to be a porous asphalt pavement structure. In determining the water quality, recharge, and peak flow attenuation requirements, the calculations assume the entire parking area (including porous pavement) is impervious (CN=98) for conservative measures.

A freshwater wetland and intermittent stream are present on along the site's northeastern corner. The regulated 50' Perimeter Wetland and 100' riverbank wetland extends into the project area, and proposed disturbances within these areas have been minimized to the greatest extent practicable. An ASSF (area subject to stormwater flowage) is also present along the site's eastern border, which receives runoff from the subject parcel and existing apartment complex prior to discharging flowage into the wetland area. The ASSF shall remain undisturbed and the watershed area draining to it shall be substantially decreased. The majority of the site’s catchment area ultimately drains to the wetlands, with the exception of a small portion of the site’s frontage which drains to the Kingstown Road closed drainage system.

In addition to the new building, sidewalks, and porous pavement, the project scope includes a new closed drainage system, underground utilities, and landscaping. Stormwater runoff generated on site will be directed to a new underground detention system and/or sand filter prior to discharging into the downstream wetland area. The proposed limit of disturbance is approximately 63,750 square feet (1.46 acres), which includes disturbed areas on the abutting parking lot for the parking lot connection construction. Within the limits of disturbance, there is 32,264 square feet (0.74 acres) of impervious area, including recently demolished building roofs, which yields an existing impervious percentage of 50.6%. If the demolished rooftop areas are excluded from the calculation (6,392 sf), then the existing impervious percentage drops to 40.6%, which is still above the 40%
threshold for a Redevelopment project. The proposed drainage systems have been designed to meet all requirements applicable for a redevelopment project in the Rhode Island Stormwater Design and Installation Standards Manual and South Kingstown Zoning Ordinance. Refer to Figure 1 for the site locus and Figure 2 for the plat map.

Figure 1 – Project Area
Figure 2 – Property Map
Section 2: Stormwater Management Standards

This section discusses the Stormwater Management Standards and in accordance with the Rhode Island Stormwater Design and Installation Standards Manual (RISDISM), amended March 2015, and Chapter 20 – Stormwater Management of the South Kingstown Zoning Ordinance as applicable to the project.

Minimum Standard 2: Groundwater Recharge

The proposed project has been designed to meet the groundwater recharge criteria with the use of a sand filter. The proposed improvements are classified as a Redevelopment; therefore, the required groundwater recharge volume is determined using the redevelopment calculation for Required Stormwater Treatment Area (refer to Minimum Standard 6: Redevelopment and Infill Projects section). The majority of the proposed parking lot shall be porous pavement to improve groundwater recharge capabilities when compared to traditional pavement. The proposed sand filter and underground detention system have been designed and sized to exceed the minimum Required Recharge Volume even when including the proposed porous pavement area as impervious in the required recharge calculation. The supporting calculations are provided below.

Required Recharge Volume (RV_R):

\[RV_R = 1" \times F \times I / 12 \]

Where:
\[RV_R = \text{Required Recharge Volume} \]
\[F = \text{Recharge Factor (Rhode Island Stormwater Design and Installation Standards Manual) Note: The existing soils within the site are identified as Udorthents-Urban land complex (UD), and Narragansett silt loam, 3-8% slopes (NaB). The Hydrologic soil series associated with NaB is HSG-B, but UD does not have a designated HSG group. The Hydrologic Soil Group B will be used site-wide to determine the post-development recharge volume (F= 0.35).} \]
\[I = \text{Design Impervious} = 16,830 \text{ sf} \]
\[\text{refer to Minimum Standard 6: Redevelopment and Infill Projects section} \]
\[= 1" \times (1'/12") \times (0.35 \times 16,830 \text{ sf}) \]
\[= 491 \text{ cf} \]

Provided Recharge Volume (RV_P):

RV_P is the provided recharge volume and represents the storage volume within the sand filter and underground detention system below the sand filter weir elevation of 134.63. Refer to the Stage-Area-Storage table for the sand filter, Node SF, and the underground detention system, Node UDS, in Stormwater Runoff Calculations in Appendix C.
Drawdown Time:

Water within the proposed drainage facilities will infiltrate (drawdown) into the soils below the infiltration systems. Soil evaluations have been conducted on-site to determine the appropriate infiltration design rates based upon the soil textures. The restrictive subsoils on site have been identified as silt and assigned a design infiltration rate of 0.27 in/hr. Section 5.3.2 of the RISDISM requires infiltration systems to fully de-water the entire water quality volume within 48 hours after the storm event. Drawdown calculations are provided below to demonstrate that the proposed infiltration facilities are emptied within 72 hours from the start of the 24-hour storm event (24 hr storm event + 48 hrs = 72 hours total drawdown time maximum).

\[T_D = \frac{P_v}{(K \times A)} \]

Where:
- \(T_D \) = Drawdown Time
- \(P_v \) = Provided Recharge Volume
- \(K \) = in/hr
- \(A \) = Surface Area at WQ elevation

\[T_D = \frac{(1,426 \text{ cf})/[(0.27 \text{ in/hr}) (1'/12") (939 \text{ sf})]} \]

\[= 67.5 \text{ hours} \]

Minimum Standard 3: Water Quality Improvements

The project has been designed to meet the water quality requirements with the use of a Stormceptor, Sand Filter, Underground Detention System, and Porous Pavement. The stormwater management system has been designed to demonstrate the water quality standards are satisfied without consideration of the porous pavement in an effort to conservatively demonstrate compliance with the Minimum Standards. Stormwater runoff generated on site that enters the proposed catchbasins, drain manholes, and drain pipe shall first be directed to the underground detention system for attenuation prior to entering the sand filter basin. The bottom of the underground detention system is set below the overflow weir outlet of the sand filter, thus allowing some credit towards the provided water quality volume below the outlet. Surface runoff directed to the underground detention system shall first pass through a Stormceptor for pretreatment, while roof runoff from the new buildings shall enter the system without pretreatment. The lower parking lot area will enter the proposed sediment forebay for pretreatment prior to entering the sand filter for recharge and water quality. Provided below and on the following page are the water quality design calculations:

Required Water Quality Volume (WQV\(_R\)):

\[WQV_R = 1" \times I /12 \]

Where:
- \(WQV_R \) = Required Water Quality Volume
I = Design Impervious = 16,830 sf
 (refer to Minimum Standard 6: Redevelopment and Infill Projects section)

\[WQV_R = 1" \times \left(\frac{1}{12}\" \right) \times (16,830 \text{ sf}) \]
\[= 1,403 \text{ cf} \]

Provided Water Quality Volume (WQVP):

\[WQV_P = 471 \text{ cf (sand filter)} + 955 \text{ cf (underground detention system)} \]
\[= 1,426 \text{ cf} \]

Pretreatment

All ground surface runoff directed to the proposed underground detention system shall first flow through DMH5, Stormceptor model STC-900 for pretreatment. The associated peak flow rate during the water quality storm event which the Stormceptor shall receive computes to 0.46 cfs. The maximum Stormceptor water quality flow rates from Table 1 indicates the model STC-900 is sized for the proposed treatment flow rate requirements. Refer to Appendix C for details.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STC 4500</td>
<td>470 (1,780)</td>
<td>86 (330)</td>
<td>46 (1,302)</td>
<td>0.283</td>
<td>0.38</td>
</tr>
<tr>
<td>STC 900</td>
<td>952 (3,600)</td>
<td>251 (950)</td>
<td>89 (2,520)</td>
<td>0.636</td>
<td>0.85</td>
</tr>
<tr>
<td>STC 1200</td>
<td>1,234 (4,570)</td>
<td>251 (950)</td>
<td>127 (3,996)</td>
<td>0.636</td>
<td>0.85</td>
</tr>
<tr>
<td>STC 1800</td>
<td>1,633 (6,940)</td>
<td>251 (950)</td>
<td>207 (5,661)</td>
<td>0.636</td>
<td>0.85</td>
</tr>
<tr>
<td>EOS 12-590</td>
<td>1,833 (6,940)</td>
<td>590 (2,233)</td>
<td>166 (4,707)</td>
<td>0.636</td>
<td>0.85</td>
</tr>
<tr>
<td>STC 2400</td>
<td>2,482 (9,330)</td>
<td>840 (3,180)</td>
<td>205 (5,806)</td>
<td>1.059</td>
<td>1.42</td>
</tr>
<tr>
<td>STC 3600</td>
<td>3,715 (1,406)</td>
<td>840 (3,180)</td>
<td>373 (10,652)</td>
<td>1.059</td>
<td>1.42</td>
</tr>
<tr>
<td>STC 4800</td>
<td>5,059 (1,950)</td>
<td>909 (3,440)</td>
<td>543 (15,376)</td>
<td>1.766</td>
<td>2.38</td>
</tr>
<tr>
<td>STC 6000</td>
<td>6,136 (22,230)</td>
<td>909 (3,440)</td>
<td>687 (19,453)</td>
<td>1.766</td>
<td>2.38</td>
</tr>
<tr>
<td>STC 7200</td>
<td>7,420 (28,080)</td>
<td>1,059 (4,010)</td>
<td>839 (23,757)</td>
<td>2.472</td>
<td>3.33</td>
</tr>
<tr>
<td>STC 11000</td>
<td>11,194 (42,370)</td>
<td>2,797 (10,590)</td>
<td>1,086 (30,752)</td>
<td>3.531</td>
<td>4.75</td>
</tr>
<tr>
<td>STC 13000</td>
<td>13,349 (50,530)</td>
<td>2,797 (10,590)</td>
<td>1,374 (38,907)</td>
<td>3.531</td>
<td>4.75</td>
</tr>
<tr>
<td>STC 16000</td>
<td>15,918 (60,260)</td>
<td>3,055 (11,560)</td>
<td>1,677 (47,487)</td>
<td>4.944</td>
<td>6.66</td>
</tr>
</tbody>
</table>

* Impervious areas are approximate only. Actual areas will vary based on site-specific conditions.
Minimum Standard 4: Conveyance and Natural Channel Protection

The channel protection volume (CPv) is the 24-hour extended detention of the post-development runoff volume from the 1 year, 24 hour, Type III storm event. As a redevelopment project, the proposed stormwater management systems only have to address Standards 2, 3, and 7-11. Due to the shallow groundwater table and other physical site constraints the proposed drainage system cannot satisfy Minimum Standard 4 and is an allowable practice for redevelopment projects such as this (RISDISM, Section 3.2.6).
Minimum Standard 5: Overbank Flood Protection

This section provides an assessment of the existing and proposed condition peak flow rates for the 1-, 2-, 10-, 25- and 100-year storm events from the project area. The purpose of this criterion is to protect downstream structures from increased runoff flows and velocities from upstream development. The proposed drainage improvements have been designed to reduce peak flow rates leaving the site for all design storm events up to the 100-year storm event.

Hydrograph Methodology:

Hydrographs have been analyzed to compare runoff for Pre- and Post-Development conditions. The hydrographs were computed utilizing "HydroCAD" Version 10.0 software. Generally, the methodology encompasses the Soil Conservation Service’s unit hydrograph method used in TR-20 which provided a basis for TR-55. The hydrologic data is the same information required for TR-55 and includes watershed areas, SCS runoff curve numbers, and the travel length from the most remote watershed point. With this data, complete SCS hydrographs can be developed for a 24 hour Type III storm. The watershed time of concentration is computed internally using the velocity method shown in SCS/NCRS Methodologies. The velocity method assumes that time of concentration is the sum of travel times for segments along the hydraulically most distant flow path. The hydraulically most distant point is the point with the longest time to the watershed outlet and not necessarily the point with the longest flow distance to the outlet.

Outlet structures will be designed by modeling stage/storage/discharge relationships within the "HydroCAD" program. The input data required is:

Discharge
- Orifice: Outlet Diameter
- Pipe: Outlet Diameter
- Manning’s N-Value
- Invert
- Length
- Slope
- Weir: Crest Length
- Crest Elevation
- Weir Coefficient

Stage/Storage
- Surface area at various stage elevations.

The "HydroCAD" program automatically routes hydrographs through infiltration and detention facilities to determine the resulting outflow and also can combine hydrographs to determine cumulative subwatershed flows.
Analysis Summary:

The Existing Conditions (Pre-Development) and Post-Development analyses of the project area were assigned two design points: the rear wetland area and Kingstown Road. Pre- vs. Post-Development peak flow comparisons were conducted to each design point to demonstrate a decrease in peak flow rates leaving the site. The subwatersheds of the pre- and post-development analysis are described below:

Pre-Development
- Watershed EX-A1 (Node EA1): Catchment area, within and upstream of the limits of disturbance, which drain directly to the rear wetland area.
- Watershed EX-A2 (Node EA2): Catchment area, within and upstream of the limits of disturbance, which drain to a depression area for ponding prior to flowing towards the rear wetland area.
- Reach EX-A (Node EA): The total pre-development runoff draining from and through the site to the rear wetland area.
- Watershed EX-B1 (Node EB1): Catchment area along the frontage of the subject property (Lot 32) which drains to Kingstown Road
- Watershed EX-B2 (Node EB2): Catchment area along the frontage of the neighboring property (Lot 28) which drains to Kingstown Road
- Reach EX-B (Node EB): The total pre-development runoff draining to Kingstown Road

Post-Development
- Watershed PR-A1 (Node PA1): Catchment area along the site’s frontage captured by CBs 1 & 2, which drain directly to DMH1
- Watershed PR-A2 (Node PA2): Catchment area which drains to the grass depression area for limited attenuation prior to entering DMH2
- Watershed PR-A3 (Node PA3): Catchment area which drains to CB3 (no attenuation) prior to entering DMH2
- Watershed PR-A4 (Node PA4): Parking lot catchment area which drains to CB4
- Watershed PR-A5 (Node PA5): Parking lot catchment area which drains to CB5
- Watershed PR-A6 (Node PA6): New roof catchment area which drains to DMH6
- Watershed PR-A7 (Node PA7): Parking lot catchment area which drains to CB6
- Watershed PR-A8 (Node PA8): Catchment area which flows directly to the sand filter
- Watershed PR-A9a (Node PA9a): Northerly perimeter catchment area which flows directly to the wetland area
- Watershed PR-A9b (Node PA9b): Southerly perimeter catchment area which flows directly to the ASSF prior to the wetland area
- Watershed PR-B (Node PB): The total post-development runoff draining to Kingstown Road
Table 2 summarizes the pre- vs. post-development peak flow rates for the 1-year, 2-year 10-year, 25-year, and 100-year frequency storm events.

Table 2 – Peak Flow Comparison (cfs)

<table>
<thead>
<tr>
<th>Rear Wetlands</th>
<th>1 Yr.</th>
<th>2 Yr.</th>
<th>10 Yr.</th>
<th>25 Yr.</th>
<th>100 Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Development</td>
<td>2.19</td>
<td>2.83</td>
<td>4.93</td>
<td>6.53</td>
<td>9.70</td>
</tr>
<tr>
<td>Post-Development</td>
<td>2.13</td>
<td>2.70</td>
<td>4.62</td>
<td>6.26</td>
<td>9.60</td>
</tr>
<tr>
<td>Change</td>
<td>-0.06</td>
<td>-0.13</td>
<td>-0.31</td>
<td>-0.27</td>
<td>-0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kingstown Road</th>
<th>1 Yr.</th>
<th>2 Yr.</th>
<th>10 Yr.</th>
<th>25 Yr.</th>
<th>100 Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Development</td>
<td>0.05</td>
<td>0.09</td>
<td>0.26</td>
<td>0.42</td>
<td>0.74</td>
</tr>
<tr>
<td>Post-Development</td>
<td>0.04</td>
<td>0.08</td>
<td>0.24</td>
<td>0.38</td>
<td>0.70</td>
</tr>
<tr>
<td>Change</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

The calculations for the 1-year, 2-year, 10-year, 25-year, and 100-year frequency storm events are provided in Stormwater Runoff Calculations in Appendix C. The water quality flow storm event (1.2”) is included to demonstrate the proposed sand filter treats and infiltrates 100% of the computed water quality flow. Note: The porous pavement has been assigned a Curve Number of 98 for all design storm event analyses to provide a conservative post-development peak flow rate of runoff leaving the site during larger magnitude storms.

Typically, a groundwater mounding analysis is included for infiltration facilities with less than 4 ft of separation from the bottom of the BMP to the seasonal high ground water table. The bottom of the sand filter media is proposed to match the estimated seasonal high groundwater table therefore a mounding analysis would be warranted. However, during the 100-year storm event the peak exfiltration rate only reaches 0.01 cfs, which is less than the 0.10 cfs decrease in peak runoff rates leaving the site during the 100-year storm event. In the event the sand filter could not infiltrate runoff due to a ground water mound, the resulting peak flow rates leaving the site during post-development conditions would still be less than pre-development conditions.
Minimum Standard 6: Redevelopment and Infill Projects

For the redevelopment calculations all disturbed (existing) impervious requires 50% treatment, and all new pavement requires 100% treatment. The required and proposed stormwater treatment areas for the project are computed below. In a conservative effort to demonstrate the stormwater standards are satisfied, the porous pavement is considered impervious in the required treatment calculations below.

Within 63,750 sf limits of disturbance:
Existing Roof = 6,392 sf, Existing Pavement = 25,872 sf
Total Existing Impervious = 6,392 sf + 25,872 sf = 32,264 sf
Existing Impervious Area Percentage = 32,264 sf / 63,750 sf = 50.6% > 40%

Proposed Roof = 10,655 sf, Proposed Pavement/Sidewalks = 5,605 sf,
Proposed Porous Pavement = 16,703 sf
Total Proposed Impervious (Included Porous Pavement) = 10,655 + 5,605 + 16,703 = 32,962 sf
Proposed Impervious Area Percentage = 32,962 sf / 63,750 sf = 51.9%
Increase in Impervious Area = 698 sf

Required Stormwater Treatment Area (RSTA)

RSTA = [Disturbed (existing) Impervious Area (DI) x 50%] + [New Impervious Area]
RSTA = [32,264 sf x 0.50] + [698 sf]
RSTA = 16,830 sf

Provided Stormwater Treatment Area (PSTA)

PSTA = Post-Development Impervious Area Draining to Sand Filter
PSTA = 4,134 sf [pavement/sidewalks] + 14,185 sf [porous pavement] + 10,655 sf [new roof] +
1,403 sf [existing roof]
PSTA = 30,377 sf
Minimum Standard 7: Pollution Prevention

The proposed stormwater pollution prevention practices to be implemented during construction are described and outlined in the accompanying site plans and on the Soil Erosion and Sediment Control Plan (SESCP).

Minimum Standard 8: Land Uses with Higher Potential Pollutant Loads

The proposed land use is not classified as a LUHPPL.

Minimum Standard 9: Illicit Discharges

There are no existing or proposed illicit discharges.
Minimum Standard 10: Construction Erosion and Sediment Control

The proposed vegetative and structural practices to be implemented during construction are described and outlined in the accompanying site plans. In addition, the operator shall initiate appropriate permanent stabilization practices on all disturbed areas as soon as possible but not more than fourteen (14) days after the construction activity in that area has temporarily or permanently ceased, unless the activity is to resume within twenty-one (21) days. If construction cannot begin within twenty-one (21) days of completing site preparation activities, all disturbed areas shall be stabilized with loam and seeding.

Additional Controls

- Install perimeter erosion controls and crushed stone construction entrances prior to construction vehicle traffic where indicated on the Temporary Drainage, Soil Erosion and Sediment Control Plans accompanying the SESC Plan/SWPPP, and in any additional locations where necessary or required by the engineer.
- Review SESC Plan/SWPPP construction notes and inspection requirements
- The Contractor is required to notify local authorities and the Rhode Island Department of Environmental Management, Office of Waste Management, of any hazardous material spill.
- The Contractor is required to maintain the site in an orderly and clean state. All construction waste shall be stored in appropriate containers prior to removal and contact with precipitation shall be kept to a minimum.
- General Maintenance procedures are outlined in the accompanying Site Plans. In addition, the Operator/Contractor are required to inspect all erosion controls on the site at least once every seven (7) calendar days and within twenty-four (24) hours after a rain event, which generates 0.25 inches of rain in a twenty-four (24) hour period and/or after a significant amount of runoff. The Operator/Contractor is also responsible for preparing a SESC/SWPPP Inspection Report with each inspection.

Sequence of Construction

Construction activities will include earthwork, grading, paving, building construction, drainage/utility installations, landscaping, soil erosion and sediment control installation and maintenance. In general, the sequence of construction will be as follows:

- Installation of perimeter erosion controls, sediment traps, and construction entrance. Inspect and maintain erosion controls throughout the construction period
- Clearing, grubbing, and tree removal
- Rough site, parking lot, and sand filter basin grading
- Install new drainage structures, pipes, utilities, and adjust existing structures as necessary
- Final site, parking lot, and stormwater system grading. Install pavement structure and other site features (i.e. guardrail, curb, berm, sidewalk etc.)
- Stabilize, loam and seed all disturbed areas
- Remove perimeter and other erosion controls upon final stabilization of site
Temporary Sediment Trap

One temporary sediment trap is proposed in accordance with the Rhode Island Soil Erosion and Sediment Control Handbook (RISESCH) and the RISDISM. These manuals identify three methods for sizing the temporary sediment traps: 134 cubic yards per acre, sediment volume method, or storage for the entire 1” storm event. The greatest of the three computed volumes represents the design volume for the temporary sediment traps. Generally, the 134 cubic yards per acre method yields a substantially larger design volume than the other methods; thus, that method is applied below to size the proposed sediment trap.

The temporary sediment trap shall have 1.5’ wet and 2’ dry storage depths, and wet storage bottom width of 12’ and a top storage width of 18’. Dry storage shall have a maximum side slope of 2:1. Using the wet and dry storage volume formulas in the RISESCH, the minimum required lengths of the traps were computed.

\[
V_w = 0.85 \times (A_w) \times D_w
\]

\[
V_d = \frac{[(A_w + A_d) / 2] \times D_d}{2}
\]

\[
V = V_w + V_d
\]

Where,

- \(V\) = Sediment trap volume (ft)
- \(V_w\) = Wet storage volume (ft³)
- \(A_w\) = Surface area at top of wet storage (ft²)
- \(D_w\) = Wet storage depth (ft)
- \(V_d\) = Dry storage volume (ft³)
- \(A_d\) = Surface area at top of dry storage (ft²)
- \(D_d\) = Dry storage depth (ft)

The equations for wet and dry storage were manipulated in terms of trench width and length, and assumed values for depths and width are input below.

\[
V_w = 0.85 \times (L \times W) \times D_w = 0.85 \times (L \times 18’) \times 1.5’
\]

\[
V_w = 23.0 \times L
\]

\[
V_d = D_d \times \frac{[(L \times W) + (W+2D_d)(L)]}{2} = 2’ \times \frac{[(L \times 18’) + (18’+2\times2’)(L)]}{2}
\]

\[
V_d = 40 \times L
\]

\[
V = V_w + V_d = (20.4 \times L) + (17 \times L)
\]

\[
V = 63.0 \times L
\]

Design Storage Volume = 63.0 x Length of Sediment Trap
Length of Sediment Trap = Design Storage Volume / 63.0

\textit{Sediment Trap}

Contributing Drainage Area = 55,937 sf (WSD EX-A1) = 1.284 acres

Design Storage Volume = 134 cy per acre x 1.284 acres = 172.1 cubic yards (4,646 cubic feet)

Length of Sediment Trap = 4,646 / 63.0 = 73.75 LF; \textbf{use 75 LF sediment trap}
Minimum Standard 11: Stormwater Management System – Maintenance Operation

In order to minimize the stormwater management system deterioration and promote system longevity, the owner shall adhere to the stand-alone document entitled “LONG TERM OPERATIONS AND MAINTENANCE PLAN FOR TOWER HILL LANDINGS ANNEX, 2095 KINGSTOWN ROAD (ROUTE 108), PLAT 32-4, LOT 32, SOUTH KINGSTOWN, RHODE ISLAND. PREPARATION DATE: AUGUST 2020,” as well as any additional requirements pertaining to inspection and maintenance measures for this site provided in Appendices E and G of the Rhode Island Stormwater Design and Installation Standards Manual.
Section 3: Appendix
A. RI Stormwater Design and Installation Standards Manual,
Appendix A: Stormwater Management Checklist
APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST AND LID PLANNING REPORT – STORMWATER DESIGN SUMMARY

PROJECT NAME
Tower Hill Landings Annex

TOWN
South Kingstown

BRIEF PROJECT DESCRIPTION:
Redevelopment of former restaurant site for new apartment complex. Scope of work includes construction of new porous pavement parking area, closed drainage system, utility connections, and landscaping.

Stormwater Management Plan (SMP) Elements – Minimum Standards

Note: All stormwater construction projects must submit a Stormwater Management Plan (SMP). However, not every element listed below is required per the RIDEM Stormwater Rules and the RIPDES Construction General Permit (CGP). This checklist will help identify the required elements to be submitted with an Application for Stormwater Construction Permit & Water Quality Certification.

PART 1. PROJECT AND SITE INFORMATION

PROJECT TYPE (Check all that apply)
- ☒ Residential
- ☐ Commercial
- ☐ Federal
- ☐ Retrofit
- ☐ Restoration
- ☐ Road
- ☐ Utility
- ☐ Fill
- ☐ Dredge
- ☐ Mine
- ☐ Other (specify):

SITE INFORMATION
- ☒ Vicinity Map

INITIAL DISCHARGE LOCATION(S): The WQv discharges to: (You may choose more than one answer if several discharge points are associated with the project.) See Guidance to identify receiving waters.
- ☒ Groundwater
- ☐ Surface Water
- ☐ MS4
- ☒ GAA
- ☐ Isolated Wetland
- ☐ RIDOT
- ☐ GA
- ☐ Named Waterbody
- ☐ RIDOT Alteration Permit is Approved
- ☐ GB
- ☒ Unnamed Waterbody Connected to Named Waterbody
- ☐ Town
- ☐ Other (specify):

ULTIMATE RECEIVING WATERBODY LOCATION(S): Include pertinent information that applies to both WQv and flow from larger storm events including overflows. Choose all that apply, and repeat table for each waterbody.
- ☒ Groundwater or Disconnected Wetland
- ☐ SRWP
- ☐ Waterbody Name: Unnamed
- ☐ Coldwater
- ☐ Warmwater
- ☐ Unassessed
- ☐ Waterbody ID: R10010045R-07
- ☐ 4th order stream of pond 50 acres or more
- ☒ TMDL for: Enterococcus
- ☐ Watershed of flood prone river (e.g., Pocasset River)
- ☐ Contributes to a priority outfall listed in the TMDL
- ☐ 303(d) list – Impairment(s) for:
- ☐ Contributes stormwater to a public beach
- ☒ Contributes to shellfishing grounds
PROJECT HISTORY

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDEM Pre- Application Meeting</td>
<td>Meeting Date:</td>
</tr>
<tr>
<td>Municipal Master Plan Approval</td>
<td>Approval Date: June 24, 2020</td>
</tr>
<tr>
<td>Subdivision Suitability Required</td>
<td>Approval #:</td>
</tr>
<tr>
<td>Previous Enforcement Action has been taken on the property</td>
<td>Enforcement #:</td>
</tr>
</tbody>
</table>

FLOODPLAIN & FLOODWAY

- Riverine 100-year floodplain: FEMA FLOODPLAIN FIRMETTE has been reviewed and the 100-year floodplain is on site
- Delineated from FEMA Maps

NOTE: Per Rule 250-RICR-150-10-8-1.1(B)(5)(d)(3), provide volumetric floodplain compensation calculations for cut and fill/displacement calculated by qualified professional

- Calculated by Professional Engineer
 - Calculations are provided for cut vs. fill/displacement volumes
 - Proposed within the 100-year floodplain
 - Amount of Fill (CY): |
 - Amount of Cut (CY): |
- Restrictions or modifications are proposed to the flow path or velocities in a floodway
- Floodplain storage capacity is impacted
- Project area is not within 100-year floodplain as defined by RIDEM

CRMC JURISDICTION

- CRMC Assent required
- Property subject to a Special Area Management Plan (SAMP). If so, specify which SAMP:
- Sea level rise mitigation has been designed into this project

LUHPPL IDENTIFICATION - MINIMUM STANDARD 8:

1. OFFICE OF WASTE MANAGEMENT (OWM)

Requirement	Details
Known or suspected releases of HAZARDOUS MATERIAL are present at	RIDEM CONTACT: \[LINK\] \[RIDEM Environmental Resources Map\] as one of the following regulated facilities
the site (Hazardous Material is defined in Rule 1.4(A)(33) of	\[SITE ID\]: \[CERCLIS/Superfund (NPL)\] \[State Hazardous Waste Site (SHWS)\] \[Environmental Land Usage Restriction (ELUR)\]
250-140-30-1 of the RIDEM Rules and Regulations for Investigation	\[Leaking Underground Storage Tank (LUST)\] \[Closed Landfill\] \[Auto Fueling Facility (e.g., gas station)\] \[Exterior Vehicles Service, Maintenance, or Equipment Cleaning Area\]
and Remediation of Hazardous Materials (the Remediation Regulations)	
Known or suspected releases of PETROLEUM PRODUCT are present at	
the site (Petroleum Product as defined in Rule 1.5(A)(84) of	
250-140-25-1 of the RIDEM Rules and Regulations for Underground	
Storage Facilities Used for Regulated Substances and Hazardous	
Materials)	
This site is identified on the RIDEM Environmental Resources Map	

Note: If any boxes in 1 above are checked, the applicant must contact the RIDEM OWM Project Manager associated with the Site to determine if subsurface infiltration of stormwater is allowable for the project. Indicate if the infiltration corresponds to “Red,” “Yellow” or “Green” as described in Section 3.2.8 of the RISDISM Guidance (Subsurface Contamination Guidance). Also, note and reference approval in PART 3, Minimum Standard 2: Groundwater Recharge/Infiltration.

2. PER MINIMUM STANDARD 8 of RICR 8.14.C.1-6 “LUHPPLS,” THE SITE IS/HAS:

- Industrial Site with RIPDES MSGP, except where No Exposure Certification exists. \[LINK\]
- Auto Fueling Facility (e.g., gas station)
- Exterior Vehicles Service, Maintenance, or Equipment Cleaning Area
REDEVELOPMENT STANDARD – MINIMUM STANDARD 6

- ☒ Pre Construction Impervious Area
- ☒ Total Pre-Construction Impervious Area (TIA) = 32,264 sf
- ☒ Total Site Area (TSA) = 63,750 sf
- ☒ Jurisdictional Wetlands (JW) = 0 sf
- ☒ Conservation Land (CL) = 0 sf
- ☒ Calculate the Site Size (defined as contiguous properties under same ownership)
 - Site Size (SS) = (TSA) – (JW) – (CL) = 63,750 sf
- ☒ (TIA) / (SS) = 0.56
- ☒ (TIA) / (SS) > 0.4?
- ☒ YES, Redevelopment

PART 2. LOW IMPACT DEVELOPMENT ASSESSMENT – MINIMUM STANDARD 1

NOT REQUIRED FOR REDEVELOPMENT OR RETROFITS

This section may be deleted if not required.

Note: A written description must be provided specifying why each method is not being used or is not applicable at the Site.

Appropriate answers may include:
- Town requires … (state the specific local requirement)
- Meets Town’s dimensional requirement of …
- Not practical for site because …
- Applying for waiver/variance to achieve this (pending/approved/denied)
- Applying for wavier/variance to seek relief from this (pending/approved/denied)

A) PRESERVATION OF UNDISTURBED AREAS, BUFFERS, AND FLOODPLAINS

- ☒ Sensitive resource areas and site constraints are identified (required)
- ☒ Local development regulations have been reviewed (required)
- ☒ All vegetated buffers and coastal and freshwater wetlands will be protected during and after construction
- ☒ Conservation Development or another site design technique has been incorporated to protect open space and pre-development hydrology. **Note:** If Conservation Development has been used, check box and skip to Subpart C
- ☒ As much natural vegetation and pre-development hydrology as possible has been maintained

APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST

Updated 12/2019
B) LOCATE DEVELOPMENT IN LESS SENSITIVE AREAS AND WORK WITH THE NATURAL LANDSCAPE CONDITIONS, HYDROLOGY, AND SOILS
- ✔ Development sites and building envelopes have been appropriately distanced from wetlands and waterbodies
- ✔ Development and stormwater systems have been located in areas with greatest infiltration capacity (e.g., soil groups A and B)
- ☐ Plans show measures to prevent soil compaction in areas designated as Qualified Pervious Areas (QPA’s)
- ✔ Development sites and building envelopes have been positioned outside of floodplains
- ✔ Site design positions buildings, roadways and parking areas in a manner that avoids impacts to surface water features
- ✔ Development sites and building envelopes have been located to minimize impacts to steep slopes (≥15%)
- ☐ Other (describe):

C) MINIMIZE CLEARING AND GRADING
- ✔ Site clearing has been restricted to minimum area needed for building footprints, development activities, construction access, and safety.
- ✔ Site has been designed to position buildings, roadways, and parking areas in a manner that minimizes grading (cut and fill quantities)
- ☐ Protection for stands of trees and individual trees and their root zones to be preserved has been specified, and such protection extends at least to the tree canopy drip line(s)
- ☐ Plan notes specify that public trees removed or damaged during construction shall be replaced with equivalent

D) REDUCE IMPERVIOUS COVER
- ☐ Reduced roadway widths (≤22 feet for ADT ≤ 400; ≤ 26 feet for ADT 400 - 2,000)
- ☐ Reduced driveway areas (length minimized via reduced ROW width (≤ 45 ft.) and/or reduced (or absolute minimum) front yard setback; width minimized to ≤ 9 ft. wide one lane; ≤ 18 ft. wide two lanes; shared driveways; pervious surface)
- ☐ Reduced building footprint: Explain approach:

- ☐ Reduced sidewalk area (≤ 4 ft. wide; one side of the street; unpaved path; pervious surface)
- ☐ Reduced cul-de-sacs (radius < 45 ft; vegetated island; alternative turn-around)
- ☐ Reduced parking lot area: Explain approach:
 - ✔ Use of pervious surfaces for driveways, sidewalks, parking areas/overflow parking areas, etc.
- ☐ Minimized impervious surfaces (project meets or is less than maximum specified by Zoning Ordinance)
- ☐ Other (describe):

E) DISCONNECT IMPERVIOUS AREA
- ☐ Impervious surfaces have been disconnected, and runoff has been diverted to QPAs to the maximum extent possible
- ☐ Residential street edges allow side-of-the-road drainage into vegetated open swales
- ☐ Parking lot landscaping breaks up impervious expanse AND accepts runoff
- ☐ Other (describe):

F) MITIGATE RUNOFF AT THE POINT OF GENERATION
- ☐ Small-scale BMPs have been designated to treat runoff as close as possible to the source
G) PROVIDE LOW-MAINTENANCE NATIVE VEGETATION
☐ Low-maintenance landscaping has been proposed using native species and cultivars
☐ Plantings of native trees and shrubs in areas previously cleared of native vegetation are shown on site plan
☐ Lawn areas have been limited/minimized, and yards have been kept undisturbed to the maximum extent practicable on residential lots

H) RESTORE STREAMS/WETLANDS
☐ Historic drainage patterns have been restored by removing closed drainage systems, daylighting buried streams, and/or restoring degraded stream channels and/or wetlands
☐ Removal of invasive species
☐ Other

PART 3. SUMMARY OF REMAINING STANDARDS

GROUNDWATER RECHARGE – MINIMUM STANDARD 2

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>
| ☒ | ☐ | The project has been designed to meet the groundwater recharge standard.
| ☐ | ☐ | If “No,” the justification for groundwater recharge criterion waiver has been explained in the Narrative (e.g., threat of groundwater contamination or physical limitation), if applicable (see RICR 8.8.D);
| ☐ | ☐ | Your waiver request has been explained in the Narrative, if applicable.
| ☐ | ☒ | Is this site identified as a Regulated Facility in Part 1, Minimum Standard 8: LUHPPL Identification?
| ☐ | ☐ | If “Yes,” has approval for infiltration by the Office of Waste Management Site Project Manager, per Part 1, Minimum Standard 8, been requested?

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Impervious Area Treated (sq ft)</th>
<th>Total Re-Required (cu ft)</th>
<th>LID Stormwater Credits (see RISDISM Section 4.6.1)</th>
<th>Recharge Required by Remaining BMPs (cu ft)</th>
<th>Recharge Provided by BMPs (cu ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-A: Wetlands</td>
<td>30,377</td>
<td>491</td>
<td>0</td>
<td>491</td>
<td>1,426</td>
</tr>
</tbody>
</table>

Notes:
1. Only BMPs listed in RISDISM Table 3-5 “List of BMPs Acceptable for Recharge” may be used to meet the recharge requirement.
2. Recharge requirement must be satisfied for each waterbody ID.

☐ Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.):
APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST

WATER QUALITY – MINIMUM STANDARD 3

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>
| ☒ | ☐ | Does this project meet or exceed the required water quality volume WQv (see RICR 8.9.E-I)?
| ☒ | ☐ | Is the proposed final impervious cover greater than 20% of the disturbed area (see RICR 8.9.E-I)?
| ☒ | ☐ | If “Yes,” either the Modified Curve Number Method or the Split Pervious/Impervious method in Hydro-CAD was used to calculate WQv; or,
| ☒ | ☐ | If “Yes,” either TR-55 or TR-20 was used to calculate WQv; and,
| ☐ | ☐ | If “No,” the project meets the minimum WQv of 0.2 watershed inches over the entire disturbed area.
| ☐ | ☐ | Not Applicable

| ☒ | ☐ | Does this project meet or exceed the ability to treat required water quality flow WQf (see RICR 8.9.I.1-3)?
| ☒ | ☐ | Does this project propose an increase of impervious cover to a receiving water body with impairments?
| ☒ | ☐ | If “Yes,” please indicate below the method that was used to address the water quality requirements of no further degradation to a low-quality water.
| ☒ | ☐ | 100% infiltration of the water quality volume
| ☐ | ☐ | RICR 8.36. A Pollutant Loading Analysis is needed and has been completed.
| ☒ | ☐ | The Water Quality Guidance Document (Water Quality Goals and Pollutant Loading Analysis Guidance for Discharges to Impaired Waters) has been followed as applicable.
| ☒ | ☐ | BMPs are proposed that are on the approved technology list. If “Yes,” please provide all required worksheets from the manufacturer.
| ☒ | ☐ | A Stormceptor STC-2400 is proposed on site. Manufacturer information included in O&M report.
| ☒ | ☐ | Additional pollutant-specific requirements and/or pollutant removal efficiencies are applicable to the site as the result of a TMDL, SAMP, or other watershed-specific requirements.
| ☒ | ☐ | If “Yes,” please describe:

TABLE 3-1: Summary of Water Quality (see RICR 8.9)

<table>
<thead>
<tr>
<th>Design Point and WB ID</th>
<th>Impervious area treated (sq ft)</th>
<th>Total WQv Required (cu ft)</th>
<th>LID Stormwater Credits (see RICR 8.18)</th>
<th>Water Quality Treatment Remaining (cu ft)</th>
<th>Water Quality Provided by BMPs (cu ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-A: Wetlands</td>
<td>30,377</td>
<td>1,403</td>
<td>0</td>
<td>1,403</td>
<td>1,426</td>
</tr>
</tbody>
</table>

Notes:
1. Only BMPs listed in RICR 8.20 and 8.25 or the Approved Technologies List of BMPs is Acceptable for Water Quality treatment.
2. For each Design Point, the Water Quality Volume Standard must be met for each Waterbody ID.

☒ YES
☐ NO

Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.):
Drainage Narrative & Assessment, Section 2: Stormwater Management Standards
CONVEYANCE AND NATURAL CHANNEL PROTECTION (RICR 8.10) – MINIMUM STANDARD 4

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Is this standard waived? If “Yes,” please indicate one or more of the reasons below:

- ☐ The project directs discharge to a large river (i.e., 4th-order stream or larger. See RISDISM Appendix I for State-wide list and map of stream orders), bodies of water >50.0 acres in surface area (i.e., lakes, ponds, reservoirs), or tidal waters.
- ☐ The project directs is a small facility with impervious cover of less than or equal to 1 acre.
- ☐ The project has a post-development peak discharge rate from the facility that is less than 2 cfs for the 1-year, 24-hour Type III design storm event (prior to any attenuation). *(Note: LID design strategies can greatly reduce the peak discharge rate).*

☐ ☒ Conveyance and natural channel protection for the site have been met.

If ‘No,’ explain why:

Redevelopment Project

TABLE 4-1: Summary of Channel Protection Volumes (see RICR 8.10)

<table>
<thead>
<tr>
<th>Design Point</th>
<th>Receiving Water Body Name</th>
<th>Coldwater Fishery? (Y/N)</th>
<th>Total CPv Required (cu ft)</th>
<th>Total CPv Provided (cu ft)</th>
<th>Average Release Rate Modeled in the 1-yr storm (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP-2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP-3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP-4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The Channel Protection Volume Standard must be met in each waterbody ID.

- ☐ YES
- ☐ NO

The CPv is released at roughly a uniform rate over a 24-hour duration (see examples of sizing calculations in Appendix D of the RISDISM).

- ☐ YES
- ☐ NO

Do additional design restrictions apply resulting from any discharge to cold-water fisheries; If “Yes,” please indicate restrictions and solutions below.

- ☐ YES
- ☐ NO

Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).
<table>
<thead>
<tr>
<th>OVERBANK FLOOD PROTECTION (RICR 8.11) AND OTHER POTENTIAL HIGH FLOWS – MINIMUM STANDARD 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>Note: The project could be approved by RIDEM but not meet RIDOT or Town standards. RIDOT’s regulations indicate that post-volumes must be less than pre-volumes for the 10-yr storm at the design point entering the RIDOT system. If you have not already received approval for the discharge to an MS4, please explain below your strategy to comply with RIDEM and the MS4.</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>☐</td>
</tr>
<tr>
<td>☒</td>
</tr>
</tbody>
</table>
Table 5-1 Hydraulic Analysis Summary

<table>
<thead>
<tr>
<th>Subwatershed (Design Point)</th>
<th>1.2” Peak Flow (cfs) **</th>
<th>1-yr Peak Flow (cfs)</th>
<th>10-yr Peak Flow (cfs)</th>
<th>100-yr Peak Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre (cfs)</td>
<td>Post (cfs)</td>
<td>Pre (cfs)</td>
<td>Post (cfs)</td>
</tr>
<tr>
<td>DP-A: Wetlands</td>
<td>0.90</td>
<td>0.22</td>
<td>2.19</td>
<td>2.13</td>
</tr>
<tr>
<td>DP-B: Kingstown Road</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

** Utilize modified curve number method or split pervious/impervious method in HydroCAD.

Note: The hydraulic analysis must demonstrate no impact to each individual subwatershed DP unless each DP discharges to the same wetland or water resource.

Indicate as follows where the pertinent calculations and/or information for the items above are provided

<table>
<thead>
<tr>
<th>Name of report/document, page numbers, appendices, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, and water surface elevations showing methodologies used and supporting calculations.</td>
</tr>
<tr>
<td>Proposed conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, water surface elevations, and routing showing the methodologies used and supporting calculations.</td>
</tr>
<tr>
<td>Final sizing calculations for structural stormwater BMPs, including contributing drainage area, storage, and outlet configuration.</td>
</tr>
<tr>
<td>Stage-storage, inflow and outflow hydrographs for storage facilities (e.g., detention, retention, or infiltration facilities).</td>
</tr>
</tbody>
</table>

Table 5-2 Summary of Best Management Practices

<table>
<thead>
<tr>
<th>BMP ID</th>
<th>DP #</th>
<th>BMP Type (e.g., bioretention, tree filter)</th>
<th>BMP Functions</th>
<th>Bypass Type</th>
<th>Horizontal Setback Criteria are met per RICR 8.21.B.10, 8.22.D.11, and 8.35.B.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pre-Treatment (Y/N/NA)</td>
<td>Rev, WQv, CPv (Y/N/NA)</td>
<td>Overbank Flood Reduction (Y/N/NA)</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>Stormceptor</td>
<td>Y, NA, NA, NA, NA, NA</td>
<td>NA, NA, NA, NA, NA</td>
<td>NA, NA, NA, NA, NA</td>
</tr>
</tbody>
</table>
Table 5.3 Summary of Soils to Evaluate Each BMP

<table>
<thead>
<tr>
<th>DP #</th>
<th>BMP ID</th>
<th>BMP Type (e.g., bioretention, tree filter)</th>
<th>Soils Analysis for Each BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test Pit ID# and Ground Elevation</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>Sand Filter</td>
<td>TP#1 135.3</td>
</tr>
</tbody>
</table>

* For underground infiltration systems (UICs) bottom equals bottom of stone, for surface infiltration basins bottom equals bottom of basin, for filters bottom equals interface of storage and top of filter layer

LAND USES WITH HIGHER POTENTIAL POLLUTANTS LOADS (LUHPPLs) – MINIMUM STANDARD 8

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

Describe any LUHPPLs identified in Part 1, Minimum Standard 8, Section 2. If not applicable, continue to Minimum Standard 9.

Are these activities already covered under an MSGP? If “No,” please explain if you have applied for an MSGP or intend to do so?

List the specific BMPs that are proposed for this project that receive stormwater from LUHPPL drainage areas. These BMP types must be listed in RISDISM Table 3-3, “Acceptable BMPs for Use at LUHPPLs.” Please list BMPs:

Additional BMPs, or additional pretreatment BMP’s if any, that meet RIPDES MSGP requirements; Please list BMPs:

Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).

ILLECIT DISCHARGES – MINIMUM STANDARD 9

Illicit discharges are defined as unpermitted discharges to Waters of the State that do not consist entirely of stormwater or uncontaminated groundwater, except for certain discharges identified in the RIPDES Phase II Stormwater General Permit.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

Have you checked for illicit discharges?

Have any been found and/or corrected? If “Yes,” please identify.

Does your report explain preventative measures that keep non-stormwater discharges out of the Waters of the State (during and after construction)?

SOIL EROSION AND SEDIMENT CONTROL (SESC) – MINIMUM STANDARD 10

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

Have you included a Soil Erosion and Sediment Control Plan Set and/or Complete Construction Plan Set?

Have you provided a separately-bound document based upon the SESC Template? If yes, proceed to Minimum Standard 11 (the following items can be assumed to be addressed).
If “No,” include a document with your submittal that addresses the following elements of an SESC Plan:

- Soil Erosion and Sediment Control Plan Project Narrative, including a description of how the fifteen (15) Performance Criteria have been met:
- Provide Natural Buffers and Maintain Existing Vegetation
- Minimize Area of Disturbance
- Minimize the Disturbance of Steep Slopes
- Preserve Topsoil
- Stabilize Soils
- Protect Storm Drain Inlets
- Protect Storm Drain Outlets
- Establish Temporary Controls for the Protection of Post-Construction Stormwater Control Measures
- Establish Perimeter Controls and Sediment Barriers
- Divert or Manage Run-On from Up-Gradient Areas
- Properly Design Constructed Stormwater Conveyance Channels
- Retain Sediment On-Site
- Control Temporary Increases in Stormwater Velocity, Volume, and Peak Flows
- Apply Construction Activity Pollution Prevention Control Measures
- Install, Inspect, and Maintain Control Measures and Take Corrective Actions
- Qualified SESC Plan Preparer’s Information and Certification
- Operator’s Information and Certification; if not known at the time of application, the Operator must certify the SESC Plan upon selection and prior to initiating site activities
- Description of Control Measures, such as Temporary Sediment Trapping and Conveyance Practices, including design calculations and supporting documentation, as required

<table>
<thead>
<tr>
<th>Operation and Maintenance Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>Have you minimized all sources of pollutant contact with stormwater runoff, to the maximum extent practicable?</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>Have you provided a separately-bound Operation and Maintenance Plan for the site and for all of the BMPs, and does it address each element of RICR 8.17 and RISDISM Appendix C and E?</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>Lawn, Garden, and Landscape Management meet the requirements of RISDISM Section G.7? If “No,” why not?</td>
</tr>
</tbody>
</table>

Is the property owner or homeowner’s association responsible for the stormwater maintenance of all BMP’s? If “No,” you must provide a legally binding and enforceable maintenance agreement (see RISDISM Appendix E, page 26) that identifies the entity that will be responsible for maintenance of the stormwater. Indicate where this agreement can be found in your report (i.e., name of report/document, page numbers, appendices, etc.).

Do you anticipate that you will need legal agreements related to the stormwater structures? (e.g. off-site easements, deed restrictions, covenants, or ELUR per the Remediation Regulations). If “Yes,” have you obtained them? Or please explain your plan to obtain them:

Sewer and Drainage Easements agreed upon by downstream abutter for drainage and sewer connections

Is stormwater being directed from public areas to private property? If “Yes,” note the following:

Note: This is not allowed unless a funding mechanism is in place to provide the finances for the long-term maintenance of the BMP and drainage, or a funding mechanism is demonstrated that can guarantee the long-term maintenance of a stormwater BMP by an individual homeowner.
APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST

PART 4. SUBWATERSHED MAPPING AND SITE-PLAN DETAILS

Existing and Proposed Subwatershed Mapping (REQUIRED)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Subwatershed and Impervious Area Summary

<table>
<thead>
<tr>
<th>Subwatershed (area to each design point)</th>
<th>First Receiving Water ID or MS4</th>
<th>Area Disturbed (acres)</th>
<th>Existing Impervious (acres)</th>
<th>Proposed Impervious (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-A: Wetland</td>
<td>RI0010045R-07</td>
<td>1.46</td>
<td>0.74</td>
<td>0.76</td>
</tr>
<tr>
<td>Site Construction Plans (Indicate that the following applicable specifications are provided)</td>
<td>YES</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Existing and proposed plans (scale not greater than 1” = 40’) with North arrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Existing and proposed site topography (with 1 or 2-foot contours); 10-foot contours accepted for off-site areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Boundaries of existing predominant vegetation and proposed limits of clearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Site Location clarification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Location and field-verified boundaries of resource protection areas such as:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► freshwater and coastal wetlands, including lakes and ponds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► coastal shoreline features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perennial and intermittent streams, in addition to Areas Subject to Storm Flowage (ASSFs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ All required setbacks (e.g., buffers, water-supply wells, septic systems)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Representative cross-section and profile drawings, and notes and details of structural stormwater management practices and conveyances (i.e., storm drains, open channels, swales, etc.), which include:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Location and size of the stormwater treatment practices (type of practice, depth, area). Stormwater treatment practices (BMPs) must have labels that correspond to RISDISM Table 5-2;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Design water surface elevations (applicable storms);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Structural details of outlet structures, embankments, spillways, stilling basins, grade-control structures, conveyance channels, etc.;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Existing and proposed structural elevations (e.g., inverts of pipes, manholes, etc.);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Location of floodplain and, if applicable, floodway limits and relationship of site to upstream and downstream properties or drainage that could be affected by work in the floodplain;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Planting plans for structural stormwater BMPs, including species, size, planting methods, and maintenance requirements of proposed planting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☒ Logs of borings and/or test pit investigations along with supporting soils/geotechnical report and corresponding water tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☒ Mapping of any OWM-approved remedial actions/systems (including ELURs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒ ☐ Location of existing and proposed roads, buildings, and other structures including limits of disturbance;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Existing and proposed utilities (e.g., water, sewer, gas, electric) and easements;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Location of existing and proposed conveyance systems, such as grass channels, swales, and storm drains, and location(s) of final discharge point(s) (wetland, waterbody, etc.);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Cross sections of roadways, with edge details such as curbs and sidewalks;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Location and dimensions of channel modifications, such as bridge or culvert crossings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ☒ Locations, cross sections, and profiles of all stream or wetland crossings and their method of stabilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
June 24, 2020

Tower Hill Landings Annex, LLC
c/o Christopher Bicho
543 Thames Street
Newport, RI 02840

RE: CONCEPTUAL MASTER PLAN PUBLIC INFORMATIONAL MEETING ON A MAJOR LAND DEVELOPMENT
- Tower Hill Landings Annex, proposed construction of an 11-unit multi-family household and associated site improvements, AP 32-4, Lot 32, located at 2095 Kingstown Road, Tower Hill Landings Annex, LLC, applicant, DCH 1 Realty Holding South, LLC, owner

Dear Mr. Bicho:

At the meeting of the South Kingstown Planning Board held on Tuesday, June 23, 2020 the Board voted as follows:

"The South Kingstown Planning Board hereby grants Conceptual master Plan approval to Tower Hill Landings Annex, an eleven (11) unit multi-family residential development located on AP 32-4, Lot 32 with a physical address of 2095 Kingstown Road, Tower Hill Landings Annex, LLC, applicant, DCH 1 Realty Holding South, Inc., owner. This approval is based upon plan set entitled: CONCEPTUAL MASTER PLAN FOR PROPOSED 11 UNIT RESIDENTIAL DEVELOPMENT, TOWER HILL LANDINGS ANNEX, LLC, Plat 32-4, Lot 32, Zoning Districts: CN and R-10, Commercial Neighborhood and Medium High Density Residential District and Kingstown Road Special Management District, 2095 Kingstown Road (Route 108), South Kingstown, R.I., Sheets 1 through 7, dated May 1, 2020, by Crossman Engineering, 151 Centerville Road, Warwick, RI 02886. This approval is based on the following Findings of Fact and Conditions of Approval:

Findings of Fact

A. The proposed development is consistent with the comprehensive community plan and/or has satisfactorily addressed the issues where there may be inconsistencies;

B. The proposed development is in compliance with the standards and provisions of the municipality's zoning ordinance;

C. There will be no significant negative environmental impacts from the proposed development as shown on the final plan, with all required conditions for approval;

D. The development, as proposed, will not result in the creation of individual lots with any physical constraints to development that building on those lots according to pertinent regulations and building standards would be impracticable. (See definition of Buildable lot). Lots with physical constraints to development may be created only if identified as permanent open space or permanently reserved for a public purpose on the approved, recorded plans; and

E. All proposed land developments and all subdivision lots have adequate and permanent physical access to a public street. Lot frontage on a public street without physical access shall not be considered in compliance with this requirement.
F. Thorough technical review of the subdivision has been conducted by the South Kingstown Technical Review Committee.

Findings of Fact, Inclusionary Zoning & Affordable Units

G. The applicant has proposed that two (2) of the eleven (11) units will be deed restricted affordable to ‘low and/or moderate income households’ as defined under Rhode Island General Laws §45-53 and the South Kingstown Zoning Ordinance.

H. The Planning Board finds that the proposed affordable units are integrated within the development and that their design is consistent with the design of the market rate units within the development. Based on this finding, the Planning Board has determined that the overall project design meets the intent of Article IV.I of the Town’s Subdivision and Land Development Regulations.

I. These affordable units shall be built and available for occupancy simultaneously with the construction and availability for occupancy of the market rate units in each of any separate phases of development.

J. Consistent with Section 502.6.J. of the Zoning Ordinance, the affordable units shall be exempt from the Town’s Pacing and Phasing requirements.

K. The affordable units shall be eligible for an exemption from the payment of Fair Share Development Fees pursuant to Section 1101.D.1 of the Zoning Ordinance and Section II, Element 5, III of the Town’s Capital Improvement Program.

Findings of Fact, Requested Relief

In accordance with Article VIII, Section B(1) of the Subdivision and Land Development Regulations with regard to waivers, the Planning Board hereby grants the waivers proposed:

<table>
<thead>
<tr>
<th>Article IV – Special Requirements: (G) Landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G.3) Perimeter Landscaping – Parking Lots and Loading Facilities: No less than ten (10) feet in width where the parking area contains five (5) spaces or more or which exceeds 2500 sq. ft. of paved area.</td>
</tr>
<tr>
<td>Required:</td>
</tr>
<tr>
<td>Proposed:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Article IV – Special Requirements: (H) Multi Household Dwellings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H.7) Front Yard Setbacks for Multi-Household Land Development Projects: Multi-Household Land Development Projects (Use Code 12.1 and 12.3), when located along any public street, shall provide a minimum front yard setback of 100 feet along said public street. No building, accessory building, parking lot or utility area shall be located in any such front yard. In addition, a landscaped or natural buffer zone of 50-foot width, shall be maintained along said public street and may be used for any required yard, open space or recreation space, for access driveways (no parking allowed) or for other necessary entrance and exit facilities.</td>
</tr>
<tr>
<td>Required:</td>
</tr>
<tr>
<td>Proposed:</td>
</tr>
</tbody>
</table>

| (H.9) Distance between Buildings on Same Lot: In any Multi-Household Land Development Project, the minimum distance between two (2) buildings or any two (2) rows of buildings, substantially parallel to each other, shall be fifty (50) feet. The minimum distance between two (2) abutting ends of buildings in the same general plane or row, shall be twenty-five (25) feet, if such walls contain no windows serving habitable rooms or shall otherwise be fifty (50) feet. |
| **Required:** | 50’ (minimum) |
| **Proposed:** | 10’ |
In doing so, the Planning Board finds that:

I. The waiver(s) or modification(s) is/are reasonable and within the general purposes and intents of these regulations; and that

M. Literal enforcement of the regulations is impracticable and will exact undue hardship because of the peculiar conditions pertaining to the land in question; or waiver or modification of the regulations is in the best interest of good planning practice or design as evidenced by consistency will the Comprehensive Community Plan and the Zoning Ordinance.

Conditions of Approval

1. The use of the property shall be limited to Use Code 12 (Multi-household Detached Structure up to 12 units) for residential development as proposed unless further amended by the South Kingstown Planning Board during the Preliminary Plan stage of review.

2. This approval is limited to eleven (11) residential units in total.

3. This approval is further limited to nine (9) market rate units and two (2) affordable units for a total of eleven (11) units.

4. Fair Share Development Fees as required in the Zoning Ordinance and as amended annually in the Capital Improvement Program shall be required for each of the nine (9) market rate units.

5. The applicant shall obtain a Special Use Permit from the Zoning Board of Review in accordance with Section 504.14 (Household occupancy by more than three unrelated individuals) of the Zoning Ordinance for the proposed use prior to submittal of the Preliminary Plan application for this project.

6. As part of the Preliminary submittal, the applicant shall provide a traffic report detailing the anticipated traffic impacts from the proposed development and the adequacy of the existing and proposed roadways to safely accommodate existing and projected traffic.

7. The parking lot shall be designed and installed with pervious pavement to minimize potential water quality impacts from stormwater subject to RIDEM approval.

8. The applicant shall utilize low impact drainage methodologies in conformance with the Rhode Island Stormwater Design and Installation Standards Manual or other best management practices.

9. The applicant shall submit a downstream carrying capacity analysis to the Department of Public Services for review and approval prior to submittal of the Preliminary Plan application. Approval of the sewer connection from the Department of Public Services shall be included with the Preliminary Plan at the time of application submittal.

10. The preliminary project design shall include a detailed erosion and sedimentation control plan including any proposed stockpile containment. The plan shall clearly identify the proposed limits of disturbance and incorporate best management practices as outlined in the Rhode Island Soil Erosion and Sedimentation Control Handbook.

11. A ‘No Access Easement’ shall be granted to the Town of South Kingstown (as a grantee) prohibiting any future driveway or other vehicular access from Kingstown Road.

12. An ‘Open Space Easement’ shall be granted to the Town of South Kingstown (as a grantee) for the purposes of enforcing the covenants of the easement.

13. The development shall satisfy its affordable housing component requirement with the dedication of two (2) units restricted for ownership/occupancy by ‘low/moderate-income households’ as defined under Rhode Island General Laws §45-53 and the South Kingstown Zoning Ordinance. The lease, sale or transfer of these affordable units shall remain affordable to low or moderate income households earning a maximum of eighty percent area-median income (80% AMI) for a period of ninety-nine (99) years.
14. The affordable units must meet the criteria for subsidy and deed restrictions such that the units count toward the low and moderate income housing stock within the Town.

15. As part of the Preliminary Plan submittal, the applicant shall indicate which specific units will contain the LMI Housing units and shall propose the schedule by which the LMI Housing units will be constructed. Said schedule shall not exceed the construction of three (3) market-rate units for every one (1) LMI Housing unit.

16. The monitoring agent for the project shall be certified and qualified by the Rhode Island Housing and Mortgage Finance Corporation.

17. As part of the Preliminary Plan submittal, the applicant shall provide drafts of a ‘Monitoring Agreement’ and a ‘Deed Restriction’ that will ensure that affordability guidelines will be met. Such documents shall be subject to the review and approval of the Town’s Special Legal Counsel and the Planning Board.

18. The monitoring agreement between the developer and the monitoring agent shall require notification to the Town of South Kingstown, as a party with a vested interest, of the availability of affordable housing units for purchase or lease. Any such notification shall be directed to the Director of Planning.

Sincerely,

Jean A. Riendeau, Chair
South Kingstown Planning Board

cc: John F. Kenyon, Esq.
Steven Cabral, P.E.
B. Pre- and Post-Development Watershed Maps
C. Stormwater Runoff Calculations (HydroCAD)
Summary for Subcatchment EA1: WSD-EX A1

Runoff = 2.19 cfs @ 12.14 hrs, Volume= 0.152 af, Depth= 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28,090</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>7,788</td>
<td>98</td>
<td>Roofs</td>
</tr>
<tr>
<td>19,349</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>710</td>
<td>55</td>
<td>Woods, Good, HSG B</td>
</tr>
<tr>
<td>55,937</td>
<td>85</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>20,059</td>
<td>61</td>
<td>35.86% Pervious Area</td>
</tr>
<tr>
<td>35,878</td>
<td>98</td>
<td>64.14% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>22</td>
<td>0.0600</td>
<td>0.14</td>
<td></td>
<td>Sheet Flow, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Dense n= 0.240 P2= 3.30"</td>
</tr>
<tr>
<td>0.5</td>
<td>60</td>
<td>0.0500</td>
<td>1.82</td>
<td></td>
<td>Sheet Flow, BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smooth surfaces n= 0.011 P2= 3.30"</td>
</tr>
<tr>
<td>0.9</td>
<td>142</td>
<td>0.0250</td>
<td>2.55</td>
<td></td>
<td>Shallow Concentrated Flow, CD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unpaved Kv= 16.1 fps</td>
</tr>
<tr>
<td>1.5</td>
<td>95</td>
<td>0.0220</td>
<td>1.04</td>
<td></td>
<td>Shallow Concentrated Flow, DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short Grass Pasture Kv= 7.0 fps</td>
</tr>
<tr>
<td>1.3</td>
<td>121</td>
<td>0.0100</td>
<td>1.50</td>
<td></td>
<td>Shallow Concentrated Flow, EF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grassed Waterway Kv= 15.0 fps</td>
</tr>
<tr>
<td>6.9</td>
<td>440</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>
Summary for Subcatchment EA2: WSD-EX A2

Runoff = 0.12 cfs @ 12.17 hrs, Volume= 0.011 af, Depth= 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 381</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>* 1,403</td>
<td>98</td>
<td>Roofs</td>
</tr>
<tr>
<td>11,306</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>13,090</td>
<td>66</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>11,306</td>
<td>61</td>
<td>86.37% Pervious Area</td>
</tr>
<tr>
<td>1,784</td>
<td>98</td>
<td>13.63% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>100</td>
<td>0.0350</td>
<td>0.22</td>
<td></td>
<td>Sheet Flow, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Short n= 0.150 P2= 3.30"</td>
</tr>
<tr>
<td>0.3</td>
<td>33</td>
<td>0.0750</td>
<td>1.92</td>
<td></td>
<td>Shallow Concentrated Flow, BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short Grass Pasture Kv= 7.0 fps</td>
</tr>
</tbody>
</table>

8.0 133 Total
Summary for Pond EGD: GRASS DEPRESSION

Inflow Area = 0.301 ac, 13.63% Impervious, Inflow Depth = 0.45" for 1-Year event
Inflow = 0.12 cfs @ 12.17 hrs, Volume = 0.011 af
Outflow = 0.01 cfs @ 17.63 hrs, Volume = 0.011 af, Atten = 94%, Lag = 327.8 min
Discarded = 0.01 cfs @ 17.63 hrs, Volume = 0.011 af
Primary = 0.00 cfs @ 0.00 hrs, Volume = 0.000 af

Routing by Dyn-Stor-Ind method, Time Span = 0.00-72.00 hrs, dt = 0.05 hrs
Peak Elev = 134.68' @ 17.63 hrs Surf.Area = 286 sf Storage = 249 cf
Plug-Flow detention time = 508.2 min calculated for 0.011 af (100% of inflow)
Center-of-Mass det. time = 508.7 min (1,432.2 - 923.5)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>133.00'</td>
<td>3,298 cf</td>
<td>Custom Stage Data (Prismatic) Listed below (Recalc)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>133.00</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>134.00</td>
<td>158</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>135.00</td>
<td>345</td>
<td>252</td>
<td>349</td>
</tr>
<tr>
<td>136.00</td>
<td>753</td>
<td>549</td>
<td>898</td>
</tr>
<tr>
<td>137.00</td>
<td>4,047</td>
<td>2,400</td>
<td>3,298</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Discarded 133.00' 1.020 in/hr Exfiltration over Surface area
#2 Primary 136.60' 10.0' long x 4.0' breadth Broad-Crested Rectangular Weir
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
2.50 3.00 3.50 4.00 4.50 5.00 5.50
Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Discarded OutFlow Max=0.01 cfs @ 17.63 hrs HW=134.68' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=133.00' TW=0.00' (Dynamic Tailwater)
Summary for Subcatchment EB1: WSD-EX B1

Runoff = 0.04 cfs @ 12.14 hrs, Volume= 0.003 af, Depth= 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 565</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>3,385</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>3,950</td>
<td>66</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>3,385</td>
<td>61</td>
<td>85.70% Pervious Area</td>
</tr>
<tr>
<td>565</td>
<td>98</td>
<td>14.30% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>44</td>
<td>0.0400</td>
<td>0.13</td>
<td></td>
<td>Sheet Flow, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Dense</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n= 0.240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2= 3.30"</td>
</tr>
</tbody>
</table>

Summary for Subcatchment EB2: WSD-EX B2

Runoff = 0.01 cfs @ 12.15 hrs, Volume= 0.001 af, Depth= 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,267</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>2,267</td>
<td>61</td>
<td>100.00% Pervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td></td>
<td>0.0200</td>
<td>0.06</td>
<td></td>
<td>Direct Entry,</td>
</tr>
</tbody>
</table>
Summary for Reach EA: WETLANDS

Inflow Area = 1.585 ac, 54.56% Impervious, Inflow Depth = 1.15" for 1-Year event
Inflow = 2.19 cfs @ 12.14 hrs, Volume= 0.152 af
Outflow = 2.19 cfs @ 12.14 hrs, Volume= 0.152 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach EB: KINGSTOWN ROAD

Inflow Area = 0.143 ac, 9.09% Impervious, Inflow Depth = 0.39" for 1-Year event
Inflow = 0.05 cfs @ 12.15 hrs, Volume= 0.005 af
Outflow = 0.05 cfs @ 12.15 hrs, Volume= 0.005 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Summary for Subcatchment PA1: WSD-PR A1

Runoff = 0.08 cfs @ 12.13 hrs, Volume = 0.006 af, Depth = 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-72.00 hrs, dt = 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,227</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>0</td>
<td>98</td>
<td>Roofs</td>
</tr>
<tr>
<td>4,504</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>5,731</td>
<td>69</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>4,504</td>
<td>61</td>
<td>78.59% Pervious Area</td>
</tr>
<tr>
<td>1,227</td>
<td>98</td>
<td>21.41% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc</th>
<th>Length</th>
<th>Slope</th>
<th>Velocity</th>
<th>Capacity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Direct Entry,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary for Subcatchment PA2: WSD-PR A2

Runoff = 0.15 cfs @ 12.15 hrs, Volume = 0.011 af, Depth = 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-72.00 hrs, dt = 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>954</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>1,403</td>
<td>98</td>
<td>Roofs</td>
</tr>
<tr>
<td>5,195</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>7,552</td>
<td>73</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>5,195</td>
<td>61</td>
<td>68.79% Pervious Area</td>
</tr>
<tr>
<td>2,357</td>
<td>98</td>
<td>31.21% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc</th>
<th>Length</th>
<th>Slope</th>
<th>Velocity</th>
<th>Capacity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7</td>
<td>0.0350</td>
<td>1.03</td>
<td></td>
<td>Sheet Flow, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smooth surfaces n = 0.011 P2= 3.30"</td>
</tr>
<tr>
<td>6.5</td>
<td>80</td>
<td>0.0350</td>
<td>0.21</td>
<td></td>
<td>Sheet Flow, BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Short n = 0.150 P2= 3.30"</td>
</tr>
<tr>
<td>6.6</td>
<td>87</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary for Subcatchment PA3: WSD-PR A3

Runoff = 0.04 cfs @ 12.13 hrs, Volume = 0.003 af, Depth = 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-72.00 hrs, dt = 0.05 hrs
NRCC 24-hr C 1-Year Rainfall = 2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>604</td>
<td>98 Pavement & Sidewalks</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>98 Roofs</td>
</tr>
<tr>
<td>2,470</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>3,074</td>
<td>68</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>2,470</td>
<td>61</td>
<td>80.35% Pervious Area</td>
</tr>
<tr>
<td>604</td>
<td>98</td>
<td>19.65% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct Entry,</td>
</tr>
</tbody>
</table>

Summary for Subcatchment PA4: WSD-PR A4

Runoff = 0.48 cfs @ 12.11 hrs, Volume = 0.035 af, Depth = 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span = 0.00-72.00 hrs, dt = 0.05 hrs
NRCC 24-hr C 1-Year Rainfall = 2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>902</td>
<td>98 Pavement & Sidewalks</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>98 Roofs</td>
</tr>
<tr>
<td>260</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>*</td>
<td>6,351</td>
<td>98 Porous Pavement</td>
</tr>
<tr>
<td>7,513</td>
<td>97</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>260</td>
<td>61</td>
<td>3.46% Pervious Area</td>
</tr>
<tr>
<td>7,253</td>
<td>98</td>
<td>96.54% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct Entry,</td>
</tr>
</tbody>
</table>
Summary for Subcatchment PA5: WSD-PR A5

Runoff = 0.26 cfs @ 12.11 hrs, Volume = 0.018 af, Depth = 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>537</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>*</td>
<td>3,714</td>
<td>Porous Pavement</td>
</tr>
<tr>
<td>4,462</td>
<td>94</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>537</td>
<td>61</td>
<td>12.03% Pervious Area</td>
</tr>
<tr>
<td>3,925</td>
<td>98</td>
<td>87.97% Impervious Area</td>
</tr>
</tbody>
</table>

Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,

Summary for Subcatchment PA6: WSD-PR A6

Runoff = 0.69 cfs @ 12.11 hrs, Volume = 0.052 af, Depth = 2.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>*</td>
<td>10,655</td>
<td>Roofs</td>
</tr>
<tr>
<td>0</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>10,655</td>
<td>98</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>10,655</td>
<td>98</td>
<td>100.00% Impervious Area</td>
</tr>
</tbody>
</table>

Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Summary for Subcatchment PA7: WSD-PR A7

Runoff = 0.29 cfs @ 12.11 hrs, Volume= 0.020 af, Depth= 2.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 236</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>671</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>* 4,119</td>
<td>98</td>
<td>Porous Pavement</td>
</tr>
</tbody>
</table>

Tc	**Length**	**Slope**	**Velocity**	**Capacity**	**Description**
5.0 | Direct Entry,

Summary for Subcatchment PA8: WSD-PR A8

Runoff = 0.02 cfs @ 12.21 hrs, Volume= 0.002 af, Depth= 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,093</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
</tbody>
</table>

Tc	**Length**	**Slope**	**Velocity**	**Capacity**	**Description**
8.8 | Sheet Flow, AB
Grass: Short n= 0.150 P2= 3.30"
0.0 | Shallow Concentrated Flow, BC
Short Grass Pasture Kv= 7.0 fps
8.8 | Total |
Summary for Subcatchment PA9a: WSD-PR A9a

Runoff = 0.03 cfs @ 12.20 hrs, Volume= 0.005 af, Depth= 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,172</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>8,172</td>
<td>61</td>
<td>100.00% Pervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>57</td>
<td>0.0500</td>
<td>0.15</td>
<td></td>
<td>Sheet Flow, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grass: Dense n= 0.240 P2= 3.30"</td>
</tr>
<tr>
<td>1.6</td>
<td>107</td>
<td>0.0240</td>
<td>1.08</td>
<td></td>
<td>Shallow Concentrated Flow, BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short Grass Pasture Kv= 7.0 fps</td>
</tr>
</tbody>
</table>

7.8 164 Total

Summary for Subcatchment PA9b: WSD-PR A9b

Runoff = 0.54 cfs @ 12.12 hrs, Volume= 0.035 af, Depth= 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 4,416</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>* 1,396</td>
<td>98</td>
<td>Roofs</td>
</tr>
<tr>
<td>4,653</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>* 2,550</td>
<td>98</td>
<td>Porous Pavement</td>
</tr>
<tr>
<td>13,015</td>
<td>85</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>4,653</td>
<td>61</td>
<td>35.75% Pervious Area</td>
</tr>
<tr>
<td>8,362</td>
<td>98</td>
<td>64.25% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>57</td>
<td>0.0500</td>
<td>0.15</td>
<td></td>
<td>Direct Entry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary for Pond D1: DMH1

Inflow Area = 0.132 ac, 21.41% Impervious, Inflow Depth = 0.57” for 1-Year event

Inflow = 0.08 cfs @ 12.13 hrs, Volume= 0.006 af
Outflow = 0.08 cfs @ 12.13 hrs, Volume= 0.006 af, Atten= 0%, Lag= 0.0 min
Primary = 0.08 cfs @ 12.13 hrs, Volume= 0.006 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 135.94’ @ 12.13 hrs

Device Routing Invert Outlet Devices
#1 Primary 135.80’ 12.0” Round Culvert L= 60.0’ Ke= 0.500
 Inlet / Outlet Invert= 135.80’ / 135.20’ S= 0.0100 '/' Cc= 0.900
 n= 0.013, Flow Area= 0.79 sf

Primary OutFlow Max=0.08 cfs @ 12.13 hrs HW=135.94’ TW=135.18’ (Dynamic Tailwater)
1=Culvert (Barrel Controls 0.08 cfs @ 1.80 fps)

Summary for Pond PGD: GRASS DEPRESSION

Inflow Area = 0.173 ac, 31.21% Impervious, Inflow Depth = 0.74” for 1-Year event

Inflow = 0.15 cfs @ 12.15 hrs, Volume= 0.011 af
Outflow = 0.01 cfs @ 13.50 hrs, Volume= 0.011 af, Atten= 90%, Lag= 81.5 min
Discarded = 0.01 cfs @ 13.50 hrs, Volume= 0.011 af
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 136.49’ @ 13.50 hrs Surf.Area= 611 sf Storage= 171 cf
Plug-Flow detention time= 143.2 min calculated for 0.011 af (100% of inflow)
Center-of-Mass det. time= 143.2 min (1,032.6 - 889.4)

Volume Invert Avail.Storage Storage Description
136.00’ 2,213 cf Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation Surf.Area Inc.Store Cum.Store
(feet) (sq-ft) (cubic-feet) (cubic-feet)
136.00 90 0 0
137.00 1,160 625 625
138.00 2,015 1,588 2,213

Device Routing Invert Outlet Devices
#1 Discarded 136.00’ 1.020 in/hr Exfiltration over Surface area
#2 Primary 136.50’ 12.0” Round Culvert
 L= 13.0’ RCP, end-section conforming to fill, Ke= 0.500
 Inlet / Outlet Invert= 136.50’ / 135.80’ S= 0.0538 '/' Cc= 0.900
 n= 0.050, Flow Area= 0.79 sf
Discarded OutFlow Max=0.01 cfs @ 13.50 hrs HW=136.49’ (Free Discharge)

1=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=136.00’ TW=135.00’ (Dynamic Tailwater)

2=Culvert (Controls 0.00 cfs)
Summary for Pond D2: DMH2

Inflow Area = 0.376 ac, 25.60% Impervious, Inflow Depth = 0.30" for 1-Year event
Inflow = 0.12 cfs @ 12.13 hrs, Volume= 0.009 af
Outflow = 0.12 cfs @ 12.13 hrs, Volume= 0.009 af, Atten= 0%, Lag= 0.0 min
Primary = 0.12 cfs @ 12.13 hrs, Volume= 0.009 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 135.19' @ 12.14 hrs

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>135.00'</td>
<td>18.0" Round Culvert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L= 60.0' Ke= 0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inlet / Outlet Invert= 135.00' / 134.35'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S= 0.0108 '/'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cc= 0.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n= 0.013, Flow Area= 1.77 sf</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=0.11 cfs @ 12.13 hrs HW=135.18' TW=134.91' (Dynamic Tailwater)
Outlet Controls 0.11 cfs @ 1.38 fps

Summary for Pond D3: DMH3

Inflow Area = 0.548 ac, 47.93% Impervious, Inflow Depth = 0.98" for 1-Year event
Inflow = 0.60 cfs @ 12.12 hrs, Volume= 0.045 af
Outflow = 0.60 cfs @ 12.12 hrs, Volume= 0.045 af, Atten= 0%, Lag= 0.0 min
Primary = 0.60 cfs @ 12.12 hrs, Volume= 0.045 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.91' @ 12.14 hrs

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>134.35'</td>
<td>18.0" Round Culvert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L= 108.0' Ke= 0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inlet / Outlet Invert= 134.35' / 133.70'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S= 0.0060 '/'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cc= 0.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n= 0.013, Flow Area= 1.77 sf</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=0.49 cfs @ 12.12 hrs HW=134.90' TW=134.78' (Dynamic Tailwater)
Outlet Controls 0.49 cfs @ 1.24 fps
Summary for Pond CB5: CB5

Inflow Area = 0.102 ac, 87.97% Impervious, Inflow Depth = 2.16" for 1-Year event
Inflow = 0.26 cfs @ 12.11 hrs, Volume= 0.018 af
Outflow = 0.26 cfs @ 12.11 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.0 min
Primary = 0.26 cfs @ 12.11 hrs, Volume= 0.018 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.89' @ 12.34 hrs

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>134.40'</td>
<td>12.0" Round Culvert L= 20.0' Ke= 0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inlet / Outlet Invert= 134.40' / 134.20' S= 0.0100 '/' Cc= 0.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n= 0.013, Flow Area= 0.79 sf</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=0.14 cfs @ 12.11 hrs HW=134.80' TW=134.78' (Dynamic Tailwater)

Summary for Pond CB6: CB6

Inflow Area = 0.115 ac, 86.65% Impervious, Inflow Depth = 2.06" for 1-Year event
Inflow = 0.29 cfs @ 12.11 hrs, Volume= 0.020 af
Outflow = 0.29 cfs @ 12.11 hrs, Volume= 0.020 af, Atten= 0%, Lag= 0.0 min
Primary = 0.29 cfs @ 12.11 hrs, Volume= 0.020 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.89' @ 12.34 hrs

<table>
<thead>
<tr>
<th>Device</th>
<th>Routing</th>
<th>Invert</th>
<th>Outlet Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Primary</td>
<td>134.20'</td>
<td>12.0" Round Culvert L= 63.0' Ke= 0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inlet / Outlet Invert= 134.20' / 133.70' S= 0.0079 '/' Cc= 0.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n= 0.013, Flow Area= 0.79 sf</td>
</tr>
</tbody>
</table>

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=134.78' TW=134.78' (Dynamic Tailwater)

1=Culvert (Controls 0.00 cfs)
Summary for Pond D4: DMH4

Inflow Area = 0.766 ac, 59.12% Impervious, Inflow Depth = 1.30" for 1-Year event
Inflow = 1.15 cfs @ 12.11 hrs, Volume= 0.083 af
Outflow = 1.15 cfs @ 12.11 hrs, Volume= 0.083 af, Atten= 0%, Lag= 0.0 min
Primary = 1.15 cfs @ 12.11 hrs, Volume= 0.083 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.89' @ 12.30 hrs

Device Routing Invert Outlet Devices
#1 Primary 133.70' 18.0" Round Culvert L= 16.0' Ke= 0.500
Inlet / Outlet Invert= 133.70' / 133.60' S= 0.0062 '/' Cc= 0.900
n= 0.013, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=134.78' TW=134.79' (Dynamic Tailwater)
1=Culvert (Controls 0.00 cfs)

Summary for Pond D5: DMH5

Inflow Area = 0.766 ac, 59.12% Impervious, Inflow Depth = 1.30" for 1-Year event
Inflow = 1.15 cfs @ 12.11 hrs, Volume= 0.083 af
Outflow = 1.15 cfs @ 12.11 hrs, Volume= 0.083 af, Atten= 0%, Lag= 0.0 min
Primary = 1.15 cfs @ 12.11 hrs, Volume= 0.082 af
Secondary = 0.04 cfs @ 12.25 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.88' @ 12.25 hrs

Device Routing Invert Outlet Devices
#1 Primary 133.60' 18.0" Round Culvert L= 16.0' Ke= 0.500
Inlet / Outlet Invert= 133.60' / 133.50' S= 0.0062 '/' Cc= 0.900
n= 0.013, Flow Area= 1.77 sf

#2 Secondary 134.75' 8.0" Round Culvert L= 15.0' Ke= 0.500
Inlet / Outlet Invert= 134.75' / 134.60' S= 0.0100 '/' Cc= 0.900
n= 0.013, Flow Area= 0.35 sf

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=134.79' TW=134.81' (Dynamic Tailwater)
1=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=0.05 cfs @ 12.25 hrs HW=134.88' TW=134.74' (Dynamic Tailwater)
2=Culvert (Outlet Controls 0.05 cfs @ 1.44 fps)
Summary for Pond D6: DMH6

Inflow Area = 0.766 ac, 59.12% Impervious, Inflow Depth = 1.29" for 1-Year event
Inflow = 1.15 cfs @ 12.11 hrs, Volume= 0.082 af
Outflow = 1.15 cfs @ 12.11 hrs, Volume= 0.082 af, Atten= 0%, Lag= 0.0 min
Primary = 1.15 cfs @ 12.11 hrs, Volume= 0.082 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.88' @ 12.20 hrs

Device Routing Invert Outlet Devices
#1 Primary 133.42' 18.0" Round Culvert L= 12.0' Ke= 0.500
Inlet / Outlet Invert= 133.42' / 133.30' S= 0.0100 '/' Cc= 0.900
n= 0.013, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=134.81' TW=134.85' (Dynamic Tailwater)

1=Culvert (Controls 0.00 cfs)
Summary for Pond UDS: UNDERGROUND DET SYSTEM

Inflow Area = 1.010 ac, 69.02% Impervious, Inflow Depth = 1.60" for 1-Year event
Inflow = 1.84 cfs @ 12.11 hrs, Volume= 0.135 af
Outflow = 1.64 cfs @ 12.14 hrs, Volume= 0.122 af, Atten= 11%, Lag= 1.7 min
Primary = 1.40 cfs @ 12.14 hrs, Volume= 0.095 af
Secondary = 0.24 cfs @ 12.14 hrs, Volume= 0.027 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.88' @ 12.15 hrs Surf.Area= 1,637 sf Storage= 1,176 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 196.3 min (981.2 - 784.9)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1A</td>
<td>132.50'</td>
<td>0 cf</td>
<td>32.75W x 50.00'L x 4.50'H Field A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,369 cf Overall - 2,654 cf Embedded = 4,715 cf x 0.0% Voids</td>
</tr>
<tr>
<td>#2A</td>
<td>133.00'</td>
<td>2,126 cf</td>
<td>ADS N-12 36" x 12 Inside #1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inside= 36.1"W x 36.1"H => 7.10 sf x 20.00'L = 142.0 cf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outside= 42.0"W x 42.0"H => 8.86 sf x 20.00'L = 177.1 cf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 Chambers in 6 Rows</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29.75' Header x 7.10 sf x 2 = 422.4 cf Inside</td>
</tr>
</tbody>
</table>

2,126 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device Routing Invert Outlet Devices
#1 Primary 134.00' 24.0" Round 24"D L= 13.0' Ke= 0.500
Inlet / Outlet Invert= 134.00' / 134.00' S= 0.0000 '/' Cc= 0.900
n= 0.013, Flow Area= 3.14 sf
#2 Device 1 133.50' 12.0" W x 6.0" H Vert. Orifice/Grate C= 0.600
#3 Device 1 134.50' 12.0" W x 5.0" H Vert. Orifice/Grate C= 0.600
#4 Device 1 135.95' 5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#5 Secondary 133.00' 6.0" Round 6"UD L= 45.0' Ke= 0.500
Inlet / Outlet Invert= 133.00' / 132.92' S= 0.0018 '/' Cc= 0.900
n= 0.013, Flow Area= 0.20 sf

Primary OutFlow Max=1.27 cfs @ 12.14 hrs HW=134.87' TW=134.77' (Dynamic Tailwater)
1=24"D (Passes 1.27 cfs of 1.70 cfs potential flow)
2=Orifice/Grate (Orifice Controls 0.76 cfs @ 1.52 fps)
3=Orifice/Grate (Orifice Controls 0.51 cfs @ 1.38 fps)
4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.22 cfs @ 12.14 hrs HW=134.87' TW=134.77' (Dynamic Tailwater)
5=6"UD (Outlet Controls 0.22 cfs @ 1.11 fps)
Pond UDS: UNDERGROUND DET SYSTEM - Chamber Wizard Field A

Chamber Model = ADS N-12 36" (ADS N-12® Pipe)
Inside = 36.1"W x 36.1"H => 7.10 sf x 20.00'L = 142.0 cf
Outside = 42.0"W x 42.0"H => 8.86 sf x 20.00'L = 177.1 cf

42.0" Wide + 21.0" Spacing = 63.0" C-C Row Spacing

2 Chambers/Row x 20.00' Long +3.50' Header x 2 = 47.00' Row Length +18.0" End Stone x 2 = 50.00'
Base Length
6 Rows x 42.0" Wide + 21.0" Spacing x 5 + 18.0" Side Stone x 2 = 32.75' Base Width
6.0" Base + 42.0" Chamber Height + 6.0" Cover = 4.50' Field Height

12 Chambers x 142.0 cf + 29.75' Header x 7.10 sf x 2 = 2,126.4 cf Chamber Storage
12 Chambers x 177.1 cf + 29.75' Header x 8.86 sf x 2 = 2,652.7 cf Displacement

7,368.7 cf Field - 2,652.7 cf Chambers = 4,716.0 cf Stone x 0.0% Voids = 0.0 cf Stone Storage

Chamber Storage = 2,126.4 cf = 0.049 af
Overall Storage Efficiency = 28.9%
Overall System Size = 50.00' x 32.75' x 4.50'

12 Chambers
272.9 cy Field
174.7 cy Stone
Stage-Area-Storage for Pond UDS: UNDERGROUND DET SYSTEM

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Storage (cubic-feet)</th>
<th>Elevation (feet)</th>
<th>Storage (cubic-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.50</td>
<td>0</td>
<td>135.15</td>
<td>1,419</td>
</tr>
<tr>
<td>132.55</td>
<td>0</td>
<td>135.20</td>
<td>1,462</td>
</tr>
<tr>
<td>132.60</td>
<td>0</td>
<td>135.25</td>
<td>1,505</td>
</tr>
<tr>
<td>132.65</td>
<td>0</td>
<td>135.30</td>
<td>1,547</td>
</tr>
<tr>
<td>132.70</td>
<td>0</td>
<td>135.35</td>
<td>1,589</td>
</tr>
<tr>
<td>132.75</td>
<td>0</td>
<td>135.40</td>
<td>1,630</td>
</tr>
<tr>
<td>132.80</td>
<td>0</td>
<td>135.45</td>
<td>1,670</td>
</tr>
<tr>
<td>132.85</td>
<td>0</td>
<td>135.50</td>
<td>1,709</td>
</tr>
<tr>
<td>132.90</td>
<td>0</td>
<td>135.55</td>
<td>1,748</td>
</tr>
<tr>
<td>132.95</td>
<td>0</td>
<td>135.60</td>
<td>1,786</td>
</tr>
<tr>
<td>133.00</td>
<td>0</td>
<td>135.65</td>
<td>1,822</td>
</tr>
<tr>
<td>133.05</td>
<td>0</td>
<td>135.70</td>
<td>1,858</td>
</tr>
<tr>
<td>133.10</td>
<td>0</td>
<td>135.75</td>
<td>1,892</td>
</tr>
<tr>
<td>133.15</td>
<td>0</td>
<td>135.80</td>
<td>1,925</td>
</tr>
<tr>
<td>133.20</td>
<td>0</td>
<td>135.85</td>
<td>1,956</td>
</tr>
<tr>
<td>133.25</td>
<td>0</td>
<td>135.90</td>
<td>1,986</td>
</tr>
<tr>
<td>133.30</td>
<td>8</td>
<td>135.95</td>
<td>2,014</td>
</tr>
<tr>
<td>133.35</td>
<td>23</td>
<td>136.00</td>
<td>2,040</td>
</tr>
<tr>
<td>133.40</td>
<td>41</td>
<td>136.05</td>
<td>2,064</td>
</tr>
<tr>
<td>133.45</td>
<td>62</td>
<td>136.10</td>
<td>2,086</td>
</tr>
<tr>
<td>133.50</td>
<td>86</td>
<td>136.15</td>
<td>2,104</td>
</tr>
<tr>
<td>133.55</td>
<td>112</td>
<td>136.20</td>
<td>2,118</td>
</tr>
<tr>
<td>133.60</td>
<td>140</td>
<td>136.25</td>
<td>2,125</td>
</tr>
<tr>
<td>133.65</td>
<td>170</td>
<td>136.30</td>
<td>2,126</td>
</tr>
<tr>
<td>133.70</td>
<td>202</td>
<td>136.35</td>
<td>2,126</td>
</tr>
<tr>
<td>133.75</td>
<td>234</td>
<td>136.40</td>
<td>2,126</td>
</tr>
<tr>
<td>133.80</td>
<td>269</td>
<td>136.45</td>
<td>2,126</td>
</tr>
<tr>
<td>133.85</td>
<td>304</td>
<td>136.50</td>
<td>2,126</td>
</tr>
<tr>
<td>133.90</td>
<td>341</td>
<td>136.55</td>
<td>2,126</td>
</tr>
<tr>
<td>133.95</td>
<td>378</td>
<td>136.60</td>
<td>2,126</td>
</tr>
<tr>
<td>134.00</td>
<td>417</td>
<td>136.65</td>
<td>2,126</td>
</tr>
<tr>
<td>134.05</td>
<td>456</td>
<td>136.70</td>
<td>2,126</td>
</tr>
<tr>
<td>134.10</td>
<td>497</td>
<td>136.75</td>
<td>2,126</td>
</tr>
<tr>
<td>134.15</td>
<td>538</td>
<td>136.80</td>
<td>2,126</td>
</tr>
<tr>
<td>134.20</td>
<td>579</td>
<td>136.85</td>
<td>2,126</td>
</tr>
<tr>
<td>134.25</td>
<td>621</td>
<td>136.90</td>
<td>2,126</td>
</tr>
<tr>
<td>134.30</td>
<td>664</td>
<td>136.95</td>
<td>2,126</td>
</tr>
<tr>
<td>134.35</td>
<td>707</td>
<td>137.00</td>
<td>2,126</td>
</tr>
<tr>
<td>134.40</td>
<td>751</td>
<td>134.45</td>
<td>795</td>
</tr>
<tr>
<td>134.50</td>
<td>839</td>
<td>134.55</td>
<td>884</td>
</tr>
<tr>
<td>134.60</td>
<td>928</td>
<td>134.65</td>
<td>973</td>
</tr>
<tr>
<td>134.70</td>
<td>1,018</td>
<td>134.75</td>
<td>1,063</td>
</tr>
<tr>
<td>134.80</td>
<td>1,108</td>
<td>134.85</td>
<td>1,153</td>
</tr>
<tr>
<td>134.90</td>
<td>1,198</td>
<td>134.95</td>
<td>1,243</td>
</tr>
<tr>
<td>135.00</td>
<td>1,287</td>
<td>135.05</td>
<td>1,332</td>
</tr>
<tr>
<td>135.10</td>
<td>1,376</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volume below Sand Filter Weir
Elev. 134.63 = 955 CF
Summary for Pond SF: SAND FILTER

Inflow Area = 1.104 ac, 63.14% Impervious, Inflow Depth = 1.36" for 1-Year event
Inflow = 1.66 cfs @ 12.14 hrs, Volume= 0.125 af
Outflow = 1.61 cfs @ 12.16 hrs, Volume= 0.122 af, Atten= 3%, Lag= 0.9 min
Discarded = 0.01 cfs @ 12.16 hrs, Volume= 0.025 af
Primary = 1.61 cfs @ 12.16 hrs, Volume= 0.097 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs
Peak Elev= 134.77' @ 12.16 hrs Surf.Area= 982 sf Storage= 608 cf
Plug-Flow detention time= 205.9 min calculated for 0.122 af (98% of inflow)
Center-of-Mass det. time= 142.4 min (1,122.2 - 979.8)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Invert</th>
<th>Avail.Storage</th>
<th>Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>132.67'</td>
<td>2,049 cf</td>
<td>Sand Filter (Prismatic) Listed below (Recalc)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Surf.Area (sq-ft)</th>
<th>Voids (%)</th>
<th>Inc.Store (cubic-feet)</th>
<th>Cum.Store (cubic-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.67</td>
<td>160</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>133.99</td>
<td>160</td>
<td>33.0</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>134.00</td>
<td>220</td>
<td>100.0</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>134.50</td>
<td>900</td>
<td>100.0</td>
<td>280</td>
<td>352</td>
</tr>
<tr>
<td>135.00</td>
<td>1,050</td>
<td>100.0</td>
<td>488</td>
<td>839</td>
</tr>
<tr>
<td>136.00</td>
<td>1,370</td>
<td>100.0</td>
<td>1,210</td>
<td>2,049</td>
</tr>
</tbody>
</table>

Device Routing Invert Outlet Devices
#1 Discarded 132.67' 0.270 in/hr Exfiltration over Surface area
#2 Primary 134.63' 12.0' long x 10.0' breadth Broad-Crested Rectangular Weir
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Discarded OutFlow Max=0.01 cfs @ 12.16 hrs HW=134.77' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=1.58 cfs @ 12.16 hrs HW=134.77' TW=0.00' (Dynamic Tailwater)
2=Broad-Crested Rectangular Weir (Weir Controls 1.58 cfs @ 0.93 fps)
Stage-Area-Storage for Pond SF: SAND FILTER

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Surface (sq-ft)</th>
<th>Storage (cubic-feet)</th>
<th>Elevation (feet)</th>
<th>Surface (sq-ft)</th>
<th>Storage (cubic-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.67</td>
<td>160</td>
<td>0</td>
<td>135.32</td>
<td>1,152</td>
<td>1,191</td>
</tr>
<tr>
<td>132.72</td>
<td>160</td>
<td>3</td>
<td>135.37</td>
<td>1,168</td>
<td>1,250</td>
</tr>
<tr>
<td>132.77</td>
<td>160</td>
<td>5</td>
<td>135.42</td>
<td>1,184</td>
<td>1,308</td>
</tr>
<tr>
<td>132.82</td>
<td>160</td>
<td>8</td>
<td>135.47</td>
<td>1,200</td>
<td>1,368</td>
</tr>
<tr>
<td>132.87</td>
<td>160</td>
<td>11</td>
<td>135.52</td>
<td>1,216</td>
<td>1,428</td>
</tr>
<tr>
<td>132.92</td>
<td>160</td>
<td>13</td>
<td>135.57</td>
<td>1,232</td>
<td>1,490</td>
</tr>
<tr>
<td>132.97</td>
<td>160</td>
<td>16</td>
<td>135.62</td>
<td>1,248</td>
<td>1,552</td>
</tr>
<tr>
<td>133.02</td>
<td>160</td>
<td>18</td>
<td>135.67</td>
<td>1,264</td>
<td>1,614</td>
</tr>
<tr>
<td>133.07</td>
<td>160</td>
<td>21</td>
<td>135.72</td>
<td>1,280</td>
<td>1,678</td>
</tr>
<tr>
<td>133.12</td>
<td>160</td>
<td>24</td>
<td>135.77</td>
<td>1,296</td>
<td>1,742</td>
</tr>
<tr>
<td>133.17</td>
<td>160</td>
<td>26</td>
<td>135.82</td>
<td>1,312</td>
<td>1,808</td>
</tr>
<tr>
<td>133.22</td>
<td>160</td>
<td>29</td>
<td>135.87</td>
<td>1,328</td>
<td>1,874</td>
</tr>
<tr>
<td>133.27</td>
<td>160</td>
<td>32</td>
<td>135.92</td>
<td>1,344</td>
<td>1,941</td>
</tr>
<tr>
<td>133.32</td>
<td>160</td>
<td>34</td>
<td>135.97</td>
<td>1,360</td>
<td>2,008</td>
</tr>
<tr>
<td>133.37</td>
<td>160</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.42</td>
<td>160</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.47</td>
<td>160</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.52</td>
<td>160</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.57</td>
<td>160</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.62</td>
<td>160</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.67</td>
<td>160</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.72</td>
<td>160</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.77</td>
<td>160</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.82</td>
<td>160</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.87</td>
<td>160</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.92</td>
<td>160</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.97</td>
<td>160</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.02</td>
<td>247</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.07</td>
<td>315</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.12</td>
<td>383</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.17</td>
<td>451</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.22</td>
<td>519</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.27</td>
<td>587</td>
<td>181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.32</td>
<td>655</td>
<td>212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.37</td>
<td>723</td>
<td>246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.42</td>
<td>791</td>
<td>284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.47</td>
<td>859</td>
<td>325</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.52</td>
<td>906</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.57</td>
<td>921</td>
<td>415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.62</td>
<td>936</td>
<td>462</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.67</td>
<td>951</td>
<td>509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.72</td>
<td>966</td>
<td>557</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.77</td>
<td>981</td>
<td>606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.82</td>
<td>996</td>
<td>655</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.87</td>
<td>1,011</td>
<td>705</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.92</td>
<td>1,026</td>
<td>756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.97</td>
<td>1,041</td>
<td>808</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.02</td>
<td>1,056</td>
<td>860</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.07</td>
<td>1,072</td>
<td>913</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.12</td>
<td>1,088</td>
<td>967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.17</td>
<td>1,104</td>
<td>1,022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.22</td>
<td>1,120</td>
<td>1,078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.27</td>
<td>1,136</td>
<td>1,134</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volume below Sand Filter Weir Elev. 134.63 = 471 CF
Summary for Reach PA: WETLANDS

Inflow Area = 1.591 ac, 55.90% Impervious, Inflow Depth = 1.04" for 1-Year event
Inflow = 2.13 cfs @ 12.15 hrs, Volume= 0.137 af
Outflow = 2.13 cfs @ 12.15 hrs, Volume= 0.137 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Subcatchment PB: WSD-PR B

Runoff = 0.04 cfs @ 12.15 hrs, Volume= 0.004 af, Depth= 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

NRCC 24-hr C 1-Year Rainfall=2.80"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 262</td>
<td>98</td>
<td>Pavement & Sidewalks</td>
</tr>
<tr>
<td>5,699</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B</td>
</tr>
<tr>
<td>5,961</td>
<td>63</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>5,699</td>
<td>61</td>
<td>95.60% Pervious Area</td>
</tr>
<tr>
<td>262</td>
<td>98</td>
<td>4.40% Impervious Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tc (min)</th>
<th>Length (feet)</th>
<th>Slope (ft/ft)</th>
<th>Velocity (ft/sec)</th>
<th>Capacity (cfs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct Entry,</td>
</tr>
</tbody>
</table>
Pond CB5: CB5
Peak Elev=134.89' Inflow=0.26 cfs 0.018 af
12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.26 cfs 0.018 af

Pond CB6: CB6
Peak Elev=134.89' Inflow=0.29 cfs 0.020 af
12.0" Round Culvert n=0.013 L=63.0' S=0.0079 '/' Outflow=0.29 cfs 0.020 af

Pond D1: DMH1
Peak Elev=135.94' Inflow=0.08 cfs 0.006 af
12.0" Round Culvert n=0.013 L=60.0' S=0.0100 '/' Outflow=0.08 cfs 0.006 af

Pond D2: DMH2
Peak Elev=135.19' Inflow=0.12 cfs 0.009 af
18.0" Round Culvert n=0.013 L=60.0' S=0.0108 '/' Outflow=0.12 cfs 0.009 af

Pond D3: DMH3
Peak Elev=134.91' Inflow=0.60 cfs 0.045 af
18.0" Round Culvert n=0.013 L=108.0' S=0.0060 '/' Outflow=0.60 cfs 0.045 af

Pond D4: DMH4
Peak Elev=134.89' Inflow=1.15 cfs 0.083 af
18.0" Round Culvert n=0.013 L=16.0' S=0.0062 '/' Outflow=1.15 cfs 0.083 af

Pond D5: DMH5
Peak Elev=134.88' Inflow=1.15 cfs 0.083 af
Primary=1.15 cfs 0.082 af Secondary=0.04 cfs 0.000 af Outflow=1.15 cfs 0.083 af

Pond D6: DMH6
Peak Elev=134.88' Inflow=1.15 cfs 0.082 af
18.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=1.15 cfs 0.082 af

Pond D7: DMH7
Peak Elev=135.92' Inflow=0.69 cfs 0.052 af
12.0" Round Culvert n=0.013 L=46.0' S=0.0109 '/' Outflow=0.69 cfs 0.052 af

Reach EA: WETLANDS
Inflow=2.19 cfs 0.152 af
Outflow=2.19 cfs 0.152 af

Subcatchment EA1: WSD-EX A1
Runoff Area=55,937 sf 64.14% Impervious Runoff Depth=1.42"
Flow Length=440' Tc=6.9 min CN=85 Runoff=2.19 cfs 0.152 af

Subcatchment EA2: WSD-EX A2
Runoff Area=13,090 sf 13.63% Impervious Runoff Depth=0.45"
Flow Length=133' Tc=8.0 min CN=66 Runoff=0.12 cfs 0.011 af

Reach EB: KINGSTOWN ROAD
Inflow=0.05 cfs 0.005 af
Outflow=0.05 cfs 0.005 af

Subcatchment EB1: WSD-EX B1
Runoff Area=3,950 sf 14.30% Impervious Runoff Depth=0.45"
Flow Length=44' Slope=0.0400 '/' Tc=5.5 min CN=66 Runoff=0.04 cfs 0.003 af

Subcatchment EB2: WSD-EX B2
Runoff Area=2,267 sf 0.00% Impervious Runoff Depth=0.29"
Tc=5.0 min CN=61 Runoff=0.01 cfs 0.001 af

Pond EGD: GRASS DEPRESSION
Peak Elev=134.68' Storage=249 cf Inflow=0.12 cfs 0.011 af
Discarded=0.01 cfs 0.011 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.011 af
2449-HydroCAD (Aug 2020)
Prepared by Crossman Engineering
NRCC 24-hr C 1-Year Rainfall=2.80"
Printed 8/25/2020
HydroCAD® 10.00-24 s/n 08202 © 2018 HydroCAD Software Solutions LLC

Reach PA: WETLANDS

Subcatchment PA1: WSD-PR A1
- Runoff Area = 5,731 sf
- 21.41% Impervious
- Runoff Depth = 0.57"
- Tc = 5.0 min
- CN = 69
- Runoff = 0.08 cfs

Subcatchment PA2: WSD-PR A2
- Runoff Area = 7,552 sf
- 31.21% Impervious
- Runoff Depth = 0.74"
- Flow Length = 87'
- Slope = 0.0350 '/'
- Tc = 6.6 min
- CN = 73
- Runoff = 0.15 cfs

Subcatchment PA3: WSD-PR A3
- Runoff Area = 3,074 sf
- 19.65% Impervious
- Runoff Depth = 0.53"
- Tc = 5.0 min
- CN = 68
- Runoff = 0.04 cfs

Subcatchment PA4: WSD-PR A4
- Runoff Area = 7,513 sf
- 96.54% Impervious
- Runoff Depth = 0.46"
- Tc = 5.0 min
- CN = 97
- Runoff = 0.48 cfs

Subcatchment PA5: WSD-PR A5
- Runoff Area = 4,462 sf
- 87.97% Impervious
- Runoff Depth = 2.16"
- Tc = 5.0 min
- CN = 94
- Runoff = 0.26 cfs

Subcatchment PA6: WSD-PR A6
- Runoff Area = 10,655 sf
- 100.00% Impervious
- Runoff Depth = 2.57"
- Tc = 5.0 min
- CN = 98
- Runoff = 0.69 cfs

Subcatchment PA7: WSD-PR A7
- Runoff Area = 5,026 sf
- 86.65% Impervious
- Runoff Depth = 2.06"
- Tc = 5.0 min
- CN = 93
- Runoff = 0.29 cfs

Subcatchment PA8: WSD-PR A8
- Runoff Area = 4,093 sf
- 0.00% Impervious
- Runoff Depth = 0.29"
- Flow Length = 110'
- Tc = 8.8 min
- CN = 61
- Runoff = 0.02 cfs

Subcatchment PA9a: WSD-PR A9a
- Runoff Area = 8,172 sf
- 0.00% Impervious
- Runoff Depth = 0.29"
- Flow Length = 164'
- Tc = 7.8 min
- CN = 61
- Runoff = 0.03 cfs

Subcatchment PA9b: WSD-PR A9b
- Runoff Area = 13,015 sf
- 64.25% Impervious
- Runoff Depth = 1.42"
- Tc = 5.0 min
- CN = 85
- Runoff = 0.54 cfs

Subcatchment PB: WSD-PR B
- Runoff Area = 5,961 sf
- 4.40% Impervious
- Runoff Depth = 0.35"
- Tc = 5.0 min
- CN = 63
- Runoff = 0.04 cfs

Pond PGD: GRASS DEPRESSION
- Peak Elev = 136.49'
- Storage = 171 cf
- Inflow = 0.15 cfs
- Discarded = 0.01 cfs
- Primary = 0.00 cfs
- Outflow = 0.01 cfs

Pond SF: SAND FILTER
- Peak Elev = 134.77'
- Storage = 608 cf
- Inflow = 1.66 cfs
- Discarded = 0.01 cfs
- Primary = 1.61 cfs
- Secondary = 0.097 cfs

Pond UDS: UNDERGROUND DET SYSTEM
- Peak Elev = 134.88'
- Storage = 1,176 cf
- Inflow = 1.84 cfs
- Primary = 1.40 cfs
- Secondary = 0.24 cfs

Total Runoff Area = 3.455 ac
Runoff Volume = 0.360 af
Average Runoff Depth = 1.25"
Time span = 0.00-72.00 hrs, dt = 0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH = SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond CB5: CB5
Peak Elev = 134.95' Inflow = 0.32 cfs 0.023 af
12.0" Round Culvert n = 0.013 L = 20.0' S = 0.0100 '/' Outflow = 0.32 cfs 0.023 af

Pond CB6: CB6
Peak Elev = 134.95' Inflow = 0.35 cfs 0.024 af
12.0" Round Culvert n = 0.013 L = 63.0' S = 0.0079 '/' Outflow = 0.35 cfs 0.024 af

Pond D1: DMH1
Peak Elev = 135.98' Inflow = 0.13 cfs 0.009 af
12.0" Round Culvert n = 0.013 L = 60.0' S = 0.0100 '/' Outflow = 0.13 cfs 0.009 af

Pond D2: DMH2
Peak Elev = 135.24' Inflow = 0.19 cfs 0.016 af
18.0" Round Culvert n = 0.013 L = 60.0' S = 0.0108 '/' Outflow = 0.19 cfs 0.016 af

Pond D3: DMH3
Peak Elev = 134.98' Inflow = 0.76 cfs 0.058 af
18.0" Round Culvert n = 0.013 L = 108.0' S = 0.0060 '/' Outflow = 0.76 cfs 0.058 af

Pond D4: DMH4
Peak Elev = 134.95' Inflow = 1.43 cfs 0.105 af
18.0" Round Culvert n = 0.013 L = 16.0' S = 0.0062 '/' Outflow = 1.43 cfs 0.105 af

Pond D5: DMH5
Peak Elev = 134.95' Inflow = 1.43 cfs 0.105 af
Primary = 1.42 cfs 0.104 af Secondary = 0.10 cfs 0.001 af Outflow = 1.43 cfs 0.105 af

Pond D6: DMH6
Peak Elev = 134.94' Inflow = 1.42 cfs 0.104 af
18.0" Round Culvert n = 0.013 L = 12.0' S = 0.0100 '/' Outflow = 1.42 cfs 0.104 af

Pond D7: DMH7
Peak Elev = 135.97' Inflow = 0.82 cfs 0.063 af
12.0" Round Culvert n = 0.013 L = 46.0' S = 0.0109 '/' Outflow = 0.82 cfs 0.063 af

Reach EA: WETLANDS
Inflow = 2.83 cfs 0.197 af
Outflow = 2.83 cfs 0.197 af

Subcatchment EA1: WSD-EX A1
Runoff Area = 55,937 sf 64.14% Impervious Runoff Depth = 1.84"
Flow Length = 440' Tc = 6.9 min CN = 85 Runoff = 2.83 cfs 0.197 af

Subcatchment EA2: WSD-EX A2
Runoff Area = 13,090 sf 13.63% Impervious Runoff Depth = 0.69"
Flow Length = 133' Tc = 8.0 min CN = 66 Runoff = 0.21 cfs 0.017 af

Reach EB: KINGSTOWN ROAD
Inflow = 0.09 cfs 0.007 af
Outflow = 0.09 cfs 0.007 af

Subcatchment EB1: WSD-EX B1
Runoff Area = 3,950 sf 14.30% Impervious Runoff Depth = 0.69"
Flow Length = 44' Slope = 0.0400 '/' Tc = 5.5 min CN = 86 Runoff = 0.07 cfs 0.005 af

Subcatchment EB2: WSD-EX B2
Runoff Area = 2,267 sf 0.00% Impervious Runoff Depth = 0.49"
Tc = 5.0 min CN = 61 Runoff = 0.02 cfs 0.002 af

Pond EGD: GRASS DEPRESSION
Peak Elev = 135.17' Storage = 413 cf Inflow = 0.21 cfs 0.017 af
Discarded = 0.01 cfs 0.017 af Primary = 0.00 cfs 0.000 af Outflow = 0.01 cfs 0.017 af
Reach PA: WETLANDS

Subcatchment PA1: WSD-PR A1
- Runoff Area: 5,731 sf
- 21.41% Impervious
- Runoff Depth: 0.84"
- $T_c = 5.0\text{ min}$
- $CN = 69$
- Runoff: 0.13 cfs
- Runoff Depth: 0.009 af

Subcatchment PA2: WSD-PR A2
- Runoff Area: 7,552 sf
- 31.21% Impervious
- Runoff Depth: 1.05"
- Flow Length: 87'
- $Slope = 0.0350\%$
- $T_c = 6.6\text{ min}$
- $CN = 73$
- Runoff: 0.21 cfs
- Runoff Depth: 0.015 af

Subcatchment PA3: WSD-PR A3
- Runoff Area: 3,074 sf
- 19.65% Impervious
- Runoff Depth: 0.79"
- $T_c = 5.0\text{ min}$
- $CN = 68$
- Runoff: 0.06 cfs
- Runoff Depth: 0.005 af

Subcatchment PA4: WSD-PR A4
- Runoff Area: 7,513 sf
- 96.54% Impervious
- Runoff Depth: 2.96"
- $T_c = 5.0\text{ min}$
- $CN = 97$
- Runoff: 0.57 cfs
- Runoff Depth: 0.042 af

Subcatchment PA5: WSD-PR A5
- Runoff Area: 4,462 sf
- 87.97% Impervious
- Runoff Depth: 0.79"
- $T_c = 5.0\text{ min}$
- $CN = 94$
- Runoff: 0.32 cfs
- Runoff Depth: 0.023 af

Subcatchment PA6: WSD-PR A6
- Runoff Area: 10,655 sf
- 100.00% Impervious
- Runoff Depth: 3.07"
- $T_c = 5.0\text{ min}$
- $CN = 93$
- Runoff: 0.82 cfs
- Runoff Depth: 0.063 af

Subcatchment PA7: WSD-PR A7
- Runoff Area: 5,026 sf
- 86.65% Impervious
- Runoff Depth: 2.64"
- $T_c = 5.0\text{ min}$
- $CN = 93$
- Runoff: 0.06 cfs
- Runoff Depth: 0.024 af

Subcatchment PA8: WSD-PR A8
- Runoff Area: 5,961 sf
- 4.40% Impervious
- Runoff Depth: 0.49"
- Flow Length: 110'
- $T_c = 8.8\text{ min}$
- $CN = 61$
- Runoff: 0.04 cfs
- Runoff Depth: 0.004 af

Subcatchment PA9a: WSD-PR A9a
- Runoff Area: 13,015 sf
- 64.25% Impervious
- Runoff Depth: 1.84"
- Flow Length: 164'
- $T_c = 7.8\text{ min}$
- $CN = 61$
- Runoff: 0.08 cfs
- Runoff Depth: 0.008 af

Subcatchment PA9b: WSD-PR A9b
- Runoff Area: 4,093 sf
- 0.00% Impervious
- Runoff Depth: 0.49"
- Flow Length: 110'
- $T_c = 8.8\text{ min}$
- $CN = 61$
- Runoff: 0.04 cfs
- Runoff Depth: 0.004 af

Subcatchment PB: WSD-PR B
- Runoff Area: 5,961 sf
- 4.40% Impervious
- Runoff Depth: 0.56"
- $T_c = 5.0\text{ min}$
- $CN = 63$
- Runoff: 0.08 cfs
- Runoff Depth: 0.006 af

Pond PGD: GRASS DEPRESSION
- Peak Elev: 136.58'
- Storage: 233 cf
- Inflow: 0.21 cfs
- Discarded: 0.02 cfs
- Primary: 0.02 cfs
- Outflow: 0.03 cfs

Pond SF: SAND FILTER
- Peak Elev: 134.79'
- Storage: 630 cf
- Inflow: 2.05 cfs
- Discarded: 0.01 cfs
- Primary: 1.99 cfs
- Outflow: 2.00 cfs

Pond UDS: UNDERGROUND DET SYSTEM
- Peak Elev: 134.94'
- Storage: 1,230 cf
- Inflow: 2.24 cfs
- Primary: 1.70 cfs
- Secondary: 0.28 cfs

Total Runoff Area = 3.455 ac
Runoff Volume = 0.467 af
Average Runoff Depth = 1.62"
48.69% Pervious = 1.682 ac
51.31% Impervious = 1.773 ac
NRCC 24-hr C 10-Year Rainfall=4.90"

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond CB5: CB5
Peak Elev=135.20' Inflow=0.49 cfs 0.036 af
12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.49 cfs 0.036 af

Pond CB6: CB6
Peak Elev=135.21' Inflow=0.55 cfs 0.039 af
12.0" Round Culvert n=0.013 L=63.0' S=0.0079 '/' Outflow=0.55 cfs 0.039 af

Pond D1: DMH1
Peak Elev=136.08' Inflow=0.31 cfs 0.021 af
12.0" Round Culvert n=0.013 L=60.0' S=0.0100 '/' Outflow=0.31 cfs 0.021 af

Pond D2: DMH2
Peak Elev=135.42' Inflow=0.54 cfs 0.045 af
18.0" Round Culvert n=0.013 L=60.0' S=0.0108 '/' Outflow=0.54 cfs 0.045 af

Pond D3: DMH3
Peak Elev=135.23' Inflow=1.38 cfs 0.110 af
18.0" Round Culvert n=0.013 L=108.0' S=0.0060 '/' Outflow=1.38 cfs 0.110 af

Pond D4: DMH4
Peak Elev=135.20' Inflow=2.42 cfs 0.185 af
18.0" Round Culvert n=0.013 L=16.0' S=0.0062 '/' Outflow=2.42 cfs 0.185 af

Pond D5: DMH5
Peak Elev=135.19' Inflow=2.25 cfs 0.178 af
Primary=2.25 cfs 0.178 af Secondary=0.47 cfs 0.008 af Outflow=2.42 cfs 0.185 af

Pond D6: DMH6
Peak Elev=135.19' Inflow=2.25 cfs 0.178 af
18.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=2.25 cfs 0.178 af

Pond D7: DMH7
Peak Elev=135.23' Inflow=1.23 cfs 0.095 af
12.0" Round Culvert n=0.013 L=46.0' S=0.0100 '/' Outflow=1.23 cfs 0.095 af

Reach EA: WETLANDS
Inflow=4.93 cfs 0.351 af
Outflow=4.93 cfs 0.351 af

Subcatchment EA1: WSD-EX A1
Runoff Area=55,937 sf 64.14% Impervious Runoff Depth=3.28"
Flow Length=440' Tc=6.9 min CN=85 Runoff=4.93 cfs 0.351 af

Subcatchment EA2: WSD-EX A2
Runoff Area=13,090 sf 13.63% Impervious Runoff Depth=1.66"
Flow Length=133' Tc=8.0 min CN=66 Runoff=0.56 cfs 0.042 af

Reach EB: KINGSTOWN ROAD
Inflow=0.26 cfs 0.018 af
Outflow=0.26 cfs 0.018 af

Subcatchment EB1: WSD-EX B1
Runoff Area=3,950 sf 14.30% Impervious Runoff Depth=1.66"
Flow Length=44' Slope=0.0400 '/' Tc=5.5 min CN=86 Runoff=0.18 cfs 0.013 af

Subcatchment EB2: WSD-EX B2
Runoff Area=2,267 sf 0.00% Impervious Runoff Depth=1.31"
Tc=5.0 min CN=61 Runoff=0.08 cfs 0.006 af

Pond EGD: GRASS DEPRESSION
Peak Elev=136.13' Storage=1,020 cf Inflow=0.56 cfs 0.042 af
Discarded=0.03 cfs 0.042 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.042 af
Total Runoff Area = 3.455 ac Runoff Volume = 0.838 af Average Runoff Depth = 2.91"
NRCC 24-hr C 25-Year Rainfall=6.10"

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond CB5: CB5
- Peak Elev=135.45' Inflow=0.62 cfs 0.046 af
- 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.62 cfs 0.046 af

Pond CB6: CB6
- Peak Elev=135.45' Inflow=0.70 cfs 0.051 af
- 12.0" Round Culvert n=0.013 L=63.0' S=0.0079 '/' Outflow=0.70 cfs 0.051 af

Pond D1: DMH1
- Peak Elev=136.14' Inflow=0.46 cfs 0.031 af
- 12.0" Round Culvert n=0.013 L=60.0' S=0.0100 '/' Outflow=0.46 cfs 0.031 af

Pond D2: DMH2
- Peak Elev=135.58' Inflow=0.96 cfs 0.071 af
- 18.0" Round Culvert n=0.013 L=108.0' S=0.0060 '/' Outflow=0.96 cfs 0.071 af

Pond D3: DMH3
- Peak Elev=135.48' Inflow=2.01 cfs 0.153 af
- 18.0" Round Culvert n=0.013 L=60.0' S=0.0108 '/' Outflow=2.01 cfs 0.153 af

Pond D4: DMH4
- Peak Elev=135.45' Inflow=3.32 cfs 0.250 af
- 18.0" Round Culvert n=0.013 L=16.0' S=0.0062 '/' Outflow=3.32 cfs 0.250 af

Pond D5: DMH5
- Peak Elev=135.42' Inflow=3.32 cfs 0.250 af
- Primary=2.90 cfs 0.234 af Secondary=0.88 cfs 0.017 af Outflow=3.32 cfs 0.250 af

Pond D6: DMH6
- Peak Elev=135.42' Inflow=2.90 cfs 0.234 af
- 18.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=2.90 cfs 0.234 af

Pond D7: DMH7
- Peak Elev=135.18' Inflow=1.53 cfs 0.119 af
- 12.0" Round Culvert n=0.013 L=46.0' S=0.0109 '/' Outflow=1.53 cfs 0.119 af

Reach EA: WETLANDS
- Inflow=6.53 cfs 0.471 af
- Outflow=6.53 cfs 0.471 af

Subcatchment EA1: WSD-EX A1
- Runoff Area=55,937 sf 64.14% Impervious Runoff Depth=4.40"
- Flow Length=440' Tc=6.9 min CN=85 Runoff=6.53 cfs 0.471 af

Subcatchment EA2: WSD-EX A2
- Runoff Area=13,090 sf 13.63% Impervious Runoff Depth=2.51"
- Flow Length=133' Tc=8.0 min CN=66 Runoff=0.86 cfs 0.063 af

Reach EB: KINGSTOWN ROAD
- Inflow=0.42 cfs 0.028 af
- Outflow=0.42 cfs 0.028 af

Subcatchment EB1: WSD-EX B1
- Runoff Area=3,950 sf 14.30% Impervious Runoff Depth=2.51"
- Flow Length=44' Slope=0.0400 '/' Tc=5.5 min CN=66 Runoff=0.28 cfs 0.019 af

Subcatchment EB2: WSD-EX B2
- Runoff Area=2,267 sf 0.00% Impervious Runoff Depth=2.07"
- Tc=5.0 min CN=61 Runoff=0.13 cfs 0.009 af

Pond EGD: GRASS DEPRESSION
- Peak Elev=136.41' Storage=1,485 cf Inflow=0.86 cfs 0.063 af
- Discarded=0.05 cfs 0.063 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.063 af
Reach PA: WETLANDS

Subcatchment PA1: WSD-PR A1
- Runoff Area = 5,731 sf
- 21.41% Impervious
- Runoff Depth = 2.79"
- Tc = 5.0 min
- CN = 69
- Runoff = 0.46 cfs
- 0.031 af

Subcatchment PA2: WSD-PR A2
- Runoff Area = 7,552 sf
- 31.21% Impervious
- Runoff Depth = 3.17"
- Flow Length = 87'
- Slope = 0.0350'
- Tc = 6.6 min
- CN = 73
- Runoff = 0.67 cfs
- 0.046 af

Subcatchment PA3: WSD-PR A3
- Runoff Area = 3,074 sf
- 19.65% Impervious
- Runoff Depth = 2.70"
- Tc = 5.0 min
- CN = 68
- Runoff = 0.24 cfs
- 0.016 af

Subcatchment PA4: WSD-PR A4
- Runoff Area = 7,513 sf
- 96.54% Impervious
- Runoff Depth = 5.74"
- Tc = 5.0 min
- CN = 97
- Runoff = 1.08 cfs
- 0.083 af

Subcatchment PA5: WSD-PR A5
- Runoff Area = 4,462 sf
- 87.97% Impervious
- Runoff Depth = 5.40"
- Tc = 5.0 min
- CN = 94
- Runoff = 0.62 cfs
- 0.046 af

Subcatchment PA6: WSD-PR A6
- Runoff Area = 10,655 sf
- 100.00% Impervious
- Runoff Depth = 5.86"
- Tc = 5.0 min
- CN = 98
- Runoff = 1.53 cfs
- 0.119 af

Subcatchment PA7: WSD-PR A7
- Runoff Area = 5,026 sf
- 4.40% Impervious
- Runoff Depth = 2.25"
- Tc = 5.0 min
- CN = 85
- Runoff = 0.70 cfs
- 0.051 af

Subcatchment PA8: WSD-PR A8
- Runoff Area = 4,930 sf
- 0.00% Impervious
- Runoff Depth = 2.07"
- Flow Length = 110’
- Tc = 8.8 min
- CN = 61
- Runoff = 0.21 cfs
- 0.016 af

Subcatchment PA9a: WSD-PR A9a
- Runoff Area = 8,172 sf
- 0.00% Impervious
- Runoff Depth = 2.07"
- Flow Length = 164’
- Tc = 7.8 min
- CN = 61
- Runoff = 0.44 cfs
- 0.032 af

Subcatchment PA9b: WSD-PR A9b
- Runoff Area = 13,015 sf
- 64.25% Impervious
- Runoff Depth = 4.40"
- Tc = 5.0 min
- CN = 85
- Runoff = 1.60 cfs
- 0.109 af

Subcatchment PB: WSD-PR B
- Runoff Area = 5,961 sf
- 4.40% Impervious
- Runoff Depth = 2.25"
- Tc = 5.0 min
- CN = 63
- Runoff = 0.38 cfs
- 0.026 af

Pond PGD: GRASS DEPRESSION
- Peak Elev = 136.88’
- Storage = 492 cf
- Inflow = 0.67 cfs
- Discarded = 0.02 cfs
- Primary = 0.38 cfs
- Outflow = 0.40 cfs
- 0.046 af

Pond SF: SAND FILTER
- Peak Elev = 134.91’
- Storage = 745 cf
- Inflow = 4.45 cfs
- Discarded = 0.01 cfs
- Primary = 4.45 cfs
- Outflow = 4.45 cfs
- 0.371 af

Pond UDS: UNDERGROUND DET SYSTEM
- Peak Elev = 135.39’
- Storage = 1,625 cf
- Inflow = 4.44 cfs
- Primary = 3.19 cfs
- Secondary = 0.51 cfs
- Outflow = 3.69 cfs
- 0.341 af

Total Runoff Area = 3.455 ac
Runoff Volume = 1.136 af
Average Runoff Depth = 3.95”
48.69% Pervious = 1.682 ac
51.31% Impervious = 1.773 ac
<table>
<thead>
<tr>
<th>Subcatchment</th>
<th>Description</th>
<th>Flow Length</th>
<th>Tc (min)</th>
<th>CN</th>
<th>Runoff Area</th>
<th>Runoff Depth</th>
<th>Inflow</th>
<th>Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubcatchmentEA1: WSD-EX A1</td>
<td>Runoff Area=55,937 sf 64.14% Impervious</td>
<td>440’</td>
<td>6.9</td>
<td>85</td>
<td>55,937 sf</td>
<td>6.70”</td>
<td>1.53 cfs</td>
<td>0.111 af</td>
</tr>
<tr>
<td>SubcatchmentEA2: WSD-EX A2</td>
<td>Runoff Area=13,090 sf 13.63% Impervious</td>
<td>133’</td>
<td>8.0</td>
<td>66</td>
<td>13,090 sf</td>
<td>4.42”</td>
<td>0.25 cfs</td>
<td>0.017 af</td>
</tr>
</tbody>
</table>

Reach EB: KINGSTOWN ROAD

| SubcatchmentEB1: WSD-EX B1 | Runoff Area=3,950 sf 14.30% Impervious | 44’ | 5.5 | 66 | 3,950 sf | 4.42” | 0.50 cfs | 0.033 af |
| SubcatchmentEB2: WSD-EX B2 | Runoff Area=2,267 sf 0.00% Impervious | 5.0 | 61 | 2,267 sf | 3.83” | 0.25 cfs | 0.017 af |

Reach EA: WETLANDS

<table>
<thead>
<tr>
<th>Subcatchment</th>
<th>Description</th>
<th>Flow Length</th>
<th>Tc (min)</th>
<th>CN</th>
<th>Runoff Area</th>
<th>Runoff Depth</th>
<th>Inflow</th>
<th>Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pond CB5: CB5</td>
<td>Peak Elev=136.06’ Inflow=0.88 cfs 0.066 af</td>
<td>12.0” Round Culvert n=0.013 L=20.0’ S=0.0100 '/'</td>
<td>Outflow=0.88 cfs 0.066 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond CB6: CB6</td>
<td>Peak Elev=136.06’ Inflow=0.99 cfs 0.074 af</td>
<td>12.0” Round Culvert n=0.013 L=63.0’ S=0.0079 '/'</td>
<td>Outflow=0.99 cfs 0.074 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D1: DMH1</td>
<td>Peak Elev=136.28’ Inflow=0.79 cfs 0.052 af</td>
<td>12.0” Round Culvert n=0.013 L=60.0’ S=0.0100 '/'</td>
<td>Outflow=0.79 cfs 0.052 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D2: DMH2</td>
<td>Peak Elev=136.10’ Inflow=1.77 cfs 0.131 af</td>
<td>18.0” Round Culvert n=0.013 L=60.0’ S=0.0108 '/'</td>
<td>Outflow=1.77 cfs 0.131 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D3: DMH3</td>
<td>Peak Elev=136.08’ Inflow=3.24 cfs 0.248 af</td>
<td>18.0” Round Culvert n=0.013 L=108.0’ S=0.0060 '/'</td>
<td>Outflow=3.24 cfs 0.248 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D4: DMH4</td>
<td>Peak Elev=136.05’ Inflow=5.10 cfs 0.388 af</td>
<td>18.0” Round Culvert n=0.013 L=16.0’ S=0.0062 '/'</td>
<td>Outflow=5.10 cfs 0.388 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D5: DMH5</td>
<td>Peak Elev=136.00’ Inflow=5.10 cfs 0.388 af Primary=4.01 cfs 0.348 af Secondary=1.58 cfs 0.039 af</td>
<td>Outflow=5.10 cfs 0.388 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D6: DMH6</td>
<td>Peak Elev=135.98’ Inflow=4.01 cfs 0.348 af</td>
<td>18.0” Round Culvert n=0.013 L=12.0’ S=0.0100 '/'</td>
<td>Outflow=4.01 cfs 0.348 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pond D7: DMH7</td>
<td>Peak Elev=136.34’ Inflow=2.14 cfs 0.168 af</td>
<td>12.0” Round Culvert n=0.013 L=46.0’ S=0.0109 '/'</td>
<td>Outflow=2.14 cfs 0.168 af</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pond EGD: GRASS DEPRESSION

| Description | Peak Elev=136.65’ Storage=2,091 cf Inflow=1.53 cfs 0.111 af Discarded=0.07 cfs 0.090 af Primary=0.29 cfs 0.021 af Outflow=0.36 cfs 0.111 af |

Inflow=9.70 cfs 0.737 af
Outflow=9.70 cfs 0.737 af
Reach PA: WETLANDS

Subcatchment PA1: WSD-PR A1
- Runoff Area: 5,731 sf
- 21.41% Impervious
- Runoff Depth: 4.78"
- Tc: 5.0 min
- CN: 69
- Runoff: 0.79 cfs
- Outflow: 0.70 cfs

Subcatchment PA2: WSD-PR A2
- Runoff Area: 7,552 sf
- 31.21% Impervious
- Runoff Depth: 5.26"
- Flow Length: 87'
- Slope: 0.0350 '/'
- Tc: 6.6 min
- CN: 73
- Runoff: 1.09 cfs
- Outflow: 0.70 cfs

Subcatchment PA3: WSD-PR A3
- Runoff Area: 3,074 sf
- 19.65% Impervious
- Runoff Depth: 4.66"
- Tc: 5.0 min
- CN: 68
- Runoff: 0.41 cfs
- Outflow: 0.27 cfs

Subcatchment PA4: WSD-PR A4
- Runoff Area: 7,513 sf
- 96.54% Impervious
- Runoff Depth: 8.14"
- Tc: 5.0 min
- CN: 97
- Runoff: 1.51 cfs
- Outflow: 0.12 cfs

Subcatchment PA5: WSD-PR A5
- Runoff Area: 4,462 sf
- 87.97% Impervious
- Runoff Depth: 7.78"
- Tc: 5.0 min
- CN: 94
- Runoff: 0.88 cfs
- Outflow: 0.66 cfs

Subcatchment PA6: WSD-PR A6
- Runoff Area: 10,655 sf
- 100.00% Impervious
- Runoff Depth: 8.26"
- Tc: 5.0 min
- CN: 98
- Runoff: 2.14 cfs
- Outflow: 1.68 cfs

Subcatchment PA7: WSD-PR A7
- Runoff Area: 5,026 sf
- 4.40% Impervious
- Runoff Depth: 4.07"
- Tc: 5.0 min
- CN: 85
- Runoff: 2.38 cfs
- Outflow: 1.67 cfs

Subcatchment PA8: WSD-PR A8
- Runoff Area: 5,961 sf
- 0.00% Impervious
- Runoff Depth: 3.83"
- Flow Length: 110'
- Tc: 8.8 min
- CN: 61
- Runoff: 0.40 cfs
- Outflow: 0.30 cfs

Subcatchment PA9a: WSD-PR A9a
- Runoff Area: 13,015 sf
- 64.25% Impervious
- Runoff Depth: 6.70"
- Flow Length: 164'
- Tc: 7.8 min
- CN: 61
- Runoff: 0.83 cfs
- Outflow: 0.60 cfs

Subcatchment PA9b: WSD-PR A9b
- Runoff Area: 8,172 sf
- 0.00% Impervious
- Runoff Depth: 3.83"
- Flow Length: 90'
- Tc: 7.8 min
- CN: 61
- Runoff: 0.40 cfs
- Outflow: 0.30 cfs

Subcatchment PB: WSD-PR B
- Runoff Area: 4,093 sf
- 4.40% Impervious
- Runoff Depth: 4.07"
- Tc: 5.0 min
- CN: 85
- Runoff: 0.70 cfs
- Outflow: 0.46 cfs

Pond PGD: GRASS DEPRESSION
- Peak Elev: 137.04'
- Storage: 667 cf
- Inflow: 1.09 cfs
- Discarded: 0.03 cfs
- Primary: 0.73 cfs
- Outflow: 0.75 cfs

Pond SF: SAND FILTER
- Peak Elev: 134.99'
- Storage: 833 cf
- Inflow: 6.78 cfs
- Discarded: 0.01 cfs
- Primary: 6.71 cfs
- Outflow: 6.72 cfs

Pond UDS: UNDERGROUND DET SYSTEM
- Peak Elev: 135.94'
- Storage: 2,011 cf
- Inflow: 6.15 cfs
- Primary: 4.40 cfs
- Secondary: 0.70 cfs
- Outflow: 5.10 cfs

Total Runoff Area = 3.455 ac
Runoff Volume = 1.761 af
Average Runoff Depth = 6.12"

48.69% Pervious = 1.682 ac
51.31% Impervious = 1.773 ac
NRCC 24-hr C WQF Rainfall=1.20"

Printed 8/25/2020

Prepared by Crossman Engineering

HydroCAD® 10.00-24 s/n 08202 © 2018 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Pond CB5: CB5

Peak Elev=134.65' Inflow=0.10 cfs 0.007 af
12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.10 cfs 0.007 af

Pond CB6: CB6

Peak Elev=134.65' Inflow=0.12 cfs 0.008 af
12.0" Round Culvert n=0.013 L=63.0' S=0.0079 '/' Outflow=0.12 cfs 0.008 af

Pond D1: DMH1

Peak Elev=135.89' Inflow=0.03 cfs 0.002 af
12.0" Round Culvert n=0.013 L=60.0' S=0.0100 '/' Outflow=0.03 cfs 0.002 af

Pond D2: DMH2

Peak Elev=135.10' Inflow=0.05 cfs 0.003 af
18.0" Round Culvert n=0.013 L=60.0' S=0.0108 '/' Outflow=0.05 cfs 0.003 af

Pond D3: DMH3

Peak Elev=134.65' Inflow=0.24 cfs 0.017 af
18.0" Round Culvert n=0.013 L=108.0' S=0.0060 '/' Outflow=0.24 cfs 0.017 af

Pond D4: DMH4

Peak Elev=134.65' Inflow=0.46 cfs 0.033 af
18.0" Round Culvert n=0.013 L=16.0' S=0.0062 '/' Outflow=0.46 cfs 0.033 af

Pond D5: DMH5

100% of WQ flow to Stormceptor (primary outflow)
Peak Elev=134.65' Inflow=0.46 cfs 0.033 af
Primary=0.46 cfs 0.033 af Secondary=0.00 cfs 0.000 af Outflow=0.46 cfs 0.033 af

Pond D6: DMH6

Stormceptor Water Quality Flow Rate
Peak Elev=134.65' Inflow=0.46 cfs 0.033 af
18.0" Round Culvert n=0.013 L=12.0' S=0.0100 '/' Outflow=0.46 cfs 0.033 af

Pond D7: DMH7

Peak Elev=135.76' Inflow=0.28 cfs 0.020 af
12.0" Round Culvert n=0.013 L=46.0' S=0.0109 '/' Outflow=0.28 cfs 0.020 af

Reach EA: WETLANDS

Inflow=0.90 cfs 0.068 af
Outflow=0.90 cfs 0.068 af

Subcatchment EA1: WSD-EX A1

Runoff Area=55,937 sf 64.14% Impervious Runoff Depth=0.63"
Flow Length=440' Tc=6.9 min CN=61/98 Runoff=0.90 cfs 0.068 af

Subcatchment EA2: WSD-EX A2

Runoff Area=13,090 sf 13.63% Impervious Runoff Depth=0.13"
Flow Length=133' Tc=5.0 min CN=61/98 Runoff=0.04 cfs 0.003 af

Reach EB: KINGSTOWN ROAD

Inflow=0.01 cfs 0.001 af
Outflow=0.01 cfs 0.001 af

Subcatchment EB1: WSD-EX B1

Runoff Area=3,950 sf 14.30% Impervious Runoff Depth=0.14"
Flow Length=44' Slope=0.0400 '/' Tc=5.5 min CN=61/98 Runoff=0.01 cfs 0.001 af

Subcatchment EB2: WSD-EX B2

Runoff Area=2,267 sf 0.00% Impervious Runoff Depth=0.00"
Tc=5.0 min CN=61/0 Runoff=0.00 cfs 0.000 af

Pond EGD: GRASS DEPRESSION

Peak Elev=133.81' Storage=69 cf Inflow=0.04 cfs 0.003 af
Discarded=0.00 cfs 0.003 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.003 af
Reach PA: WETLANDS

Subcatchment PA1: WSD-PR A1
- Runoff Area = 5,731 sf
- 21.41% Impervious
- Runoff Depth = 0.21"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.03 cfs
- 0.002 af

Subcatchment PA2: WSD-PR A2
- Runoff Area = 7,552 sf
- 31.21% Impervious
- Runoff Depth = 0.31"
- Flow Length = 87'
- Slope = 0.0350 '/'
- Tc = 6.6 min
- CN = 61/98
- Runoff = 0.06 cfs
- 0.004 af

Subcatchment PA3: WSD-PR A3
- Runoff Area = 3,074 sf
- 19.65% Impervious
- Runoff Depth = 0.19"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.02 cfs
- 0.001 af

Subcatchment PA4: WSD-PR A4
- Runoff Area = 7,513 sf
- 96.54% Impervious
- Runoff Depth = 0.95"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.19 cfs
- 0.014 af

Subcatchment PA5: WSD-PR A5
- Runoff Area = 4,462 sf
- 87.97% Impervious
- Runoff Depth = 0.87"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.02 cfs
- 0.001 af

Subcatchment PA6: WSD-PR A6
- Runoff Area = 10,655 sf
- 100.00% Impervious
- Runoff Depth = 0.99"
- Tc = 5.0 min
- CN = 0/98
- Runoff = 0.28 cfs
- 0.020 af

Subcatchment PA7: WSD-PR A7
- Runoff Area = 5,026 sf
- 86.65% Impervious
- Runoff Depth = 0.85"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.12 cfs
- 0.008 af

Subcatchment PA8: WSD-PR A8
- Runoff Area = 5,961 sf
- 4.40% Impervious
- Runoff Depth = 0.04"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.01 cfs
- 0.000 af

Subcatchment PA9a: WSD-PR A9a
- Runoff Area = 8,172 sf
- 0.00% Impervious
- Runoff Depth = 0.00"
- Flow Length = 164'
- Tc = 7.8 min
- CN = 61/0
- Runoff = 0.00 cfs
- 0.000 af

Subcatchment PA9b: WSD-PR A9b
- Runoff Area = 13,015 sf
- 64.25% Impervious
- Runoff Depth = 0.63"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.22 cfs
- 0.016 af

Subcatchment PB: WSD-PR B
- Runoff Area = 5,961 sf
- 4.40% Impervious
- Runoff Depth = 0.04"
- Tc = 5.0 min
- CN = 61/98
- Runoff = 0.01 cfs
- 0.000 af

Pond PGD: GRASS DEPRESSION
- Peak Elev = 136.27'
- Storage = 65 cf
- Inflow = 0.06 cfs
- 0.004 af
- Discarded = 0.01 cfs
- Runoff = 0.00 cfs
- 0.000 af

Pond SF: SAND FILTER
- Peak Elev = 134.65'
- Storage = 489 cf
- Inflow = 0.39 cfs
- 0.040 af
- Discarded = 0.01 cfs
- Runoff = 0.08 cfs
- 0.038 af

Pond UDS: UNDERGROUND DET SYSTEM
- Peak Elev = 134.65'
- Storage = 972 cf
- Inflow = 0.74 cfs
- 0.053 af
- Primary = 0.27 cfs
- Secondary = 0.13 cfs
- Runoff = 0.39 cfs
- 0.040 af

Total Runoff Area = 3.455 ac
Runoff Volume = 0.146 af
Average Runoff Depth = 0.51"
48.69% Pervious = 1.682 ac
51.31% Impervious = 1.773 ac
D. RIDEM Environmental Resource Map
E. FEMA Flood Map
National Flood Hazard Layer FIRMette

Legend

- **Without Base Flood Elevation (BFE)**
 - Zone A, VE, AR
- **With BFE or Depth**
 - Zone AE, AO, AH, VE, AR
- **Regulatory Floodway**

SPECIAL FLOOD HAZARD AREAS

- 0.2% Annual Chance Flood Hazard. Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile
 - Zone X
- Future Conditions 1% Annual Chance Flood Hazard
 - Zone X
- Area with Reduced Flood Risk due to Levee. See Notes
 - Zone X
- Area with Flood Risk due to Levee
 - Zone D

OTHER AREAS OF FLOOD HAZARD

- **Area of Minimal Flood Hazard**
 - Zone X
- Effective LOMRs
- **Area of Undetermined Flood Hazard**
 - Zone D

GENERAL STRUCTURES

- Channel, Culvert, or Storm Sewer
- Levee, Dike, or Floodwall

OTHER FEATURES

- Cross Sections with 1% Annual Chance Water Surface Elevation
- Coastal Transect
- Base Flood Elevation Line (BFE)
- Limit of Study
- Jurisdiction Boundary
- Coastal Transect Baseline
- Profile Baseline
- Hydrographic Feature

MAP PANELS

- Digital Data Available
- No Digital Data Available
- Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards. The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/9/2020 at 4:54:47 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.
F. Soil Survey Map
The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Rhode Island: Bristol, Kent, Newport, Providence, and Washington Counties

Survey Area Data: Version 19, Sep 12, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Apr 1, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BmB</td>
<td>Bridgehampton silt loam, till substratum, 3 to 8 percent slopes</td>
<td>0.5</td>
<td>4.2%</td>
</tr>
<tr>
<td>CB</td>
<td>Canton-Urban land complex</td>
<td>0.2</td>
<td>2.2%</td>
</tr>
<tr>
<td>NaB</td>
<td>Narragansett silt loam, 3 to 8 percent slopes</td>
<td>1.2</td>
<td>11.3%</td>
</tr>
<tr>
<td>NbB</td>
<td>Narragansett very stony silt loam, 0 to 8 percent slopes</td>
<td>1.1</td>
<td>10.2%</td>
</tr>
<tr>
<td>Rf</td>
<td>Ridgebury, Leicester, and Whitman soils, 0 to 8 percent slopes, extremely stony</td>
<td>2.3</td>
<td>21.0%</td>
</tr>
<tr>
<td>SwA</td>
<td>Swansea muck, 0 to 1 percent slopes</td>
<td>0.2</td>
<td>1.6%</td>
</tr>
<tr>
<td>UD</td>
<td>Udorthents-Urban land complex</td>
<td>5.4</td>
<td>49.0%</td>
</tr>
<tr>
<td>WcB</td>
<td>Wapping very stony silt loam, 0 to 8 percent slopes</td>
<td>0.1</td>
<td>0.6%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>11.0</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
G. Soil Evaluations
Site Evaluation Form
Part A - Soil Profile Description

<table>
<thead>
<tr>
<th>Property Owner:</th>
<th>Dan's Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Location:</td>
<td>2095 Kingstown Rd. South Kingstown</td>
</tr>
<tr>
<td>Date of Test Hole:</td>
<td>4-30-15</td>
</tr>
<tr>
<td>Soil Evaluator:</td>
<td>Brian King</td>
</tr>
<tr>
<td>Weather:</td>
<td>50 degrees - Cloudy</td>
</tr>
</tbody>
</table>

SHARED: Yes No X Time: 8:30-10:30

<table>
<thead>
<tr>
<th>TH</th>
<th>Horizon</th>
<th>Depth</th>
<th>Horizon Boundaries</th>
<th>Soil Colors</th>
<th>Re-Dox Features</th>
<th>Ab. S. Contr.</th>
<th>Texture</th>
<th>Structure</th>
<th>Consistence</th>
<th>Soil Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH1</td>
<td>A</td>
<td>0-10</td>
<td></td>
<td>10YR 3/4</td>
<td>__</td>
<td>__</td>
<td>fsl</td>
<td>gr</td>
<td>fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B/HTM</td>
<td>10-19</td>
<td></td>
<td>10YR 4/6</td>
<td>7.5YR 5/8</td>
<td>13'' c m p</td>
<td>ls</td>
<td>Osg</td>
<td>vfr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>19-28</td>
<td></td>
<td>2.5Y 3/1</td>
<td>7.5Y 5/8</td>
<td>c m p</td>
<td>s</td>
<td>Osg</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>28-36</td>
<td></td>
<td>5Y 3/1</td>
<td>7.5Y 5/8</td>
<td>c m p</td>
<td>vfs-sil</td>
<td>Om</td>
<td>fi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>36-48</td>
<td></td>
<td>G 1 2.5/N</td>
<td>__</td>
<td>__</td>
<td>sil-peat</td>
<td>Om</td>
<td>vfr</td>
<td></td>
</tr>
</tbody>
</table>

TH2

<table>
<thead>
<tr>
<th>Depth</th>
<th>Horizon Boundaries</th>
<th>Soil Colors</th>
<th>Re-Dox Features</th>
<th>Ab. S. Contr.</th>
<th>Texture</th>
<th>Structure</th>
<th>Consistence</th>
<th>Soil Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH2</td>
<td>Bit Pavement</td>
<td></td>
<td>__</td>
<td>__</td>
<td>Bituminous Pavement</td>
<td>__</td>
<td>__</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTM</td>
<td></td>
<td>10YR 4/6</td>
<td>7.5Y 5/8</td>
<td>10'' m m d</td>
<td>mix of ls, sil, peat & bricks</td>
<td>Om</td>
<td>fr</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td></td>
<td>2.5Y 4/2</td>
<td>7.5Y 6/1</td>
<td>m m p</td>
<td>vfls/sl w/pockets of sil</td>
<td>Om</td>
<td>fr/fi</td>
</tr>
</tbody>
</table>

Comments:
1. TP 1&2 possible wetland prior to past fill operations
2. Redox in upper horizons likely due to slow downward movement of water (TP1) but entire profile has redox so design
3. SHWT is 13'' & 10'' respectively
4. TP2, C1 horizon is saturated.
Site Evaluation Form
Part A – Soil Profile Description

<table>
<thead>
<tr>
<th>TH</th>
<th>Depth</th>
<th>Horizon Boundaries</th>
<th>Soil Colors</th>
<th>Re-Dox</th>
<th>Texture</th>
<th>Structure</th>
<th>Consistence</th>
<th>Soil Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-8</td>
<td></td>
<td>10YR 3/4</td>
<td>fsl</td>
<td>gr</td>
<td>fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTM/C</td>
<td>8-34</td>
<td></td>
<td>2.5Y 5/3</td>
<td>7.5YR 5/8</td>
<td>10" c m p</td>
<td>vfsl</td>
<td>Om</td>
<td>fr</td>
</tr>
<tr>
<td>C1</td>
<td>34-44</td>
<td></td>
<td>2.5Y 5/3</td>
<td>10YR 5/8</td>
<td>m m p</td>
<td>vfsl/sl</td>
<td>Om</td>
<td>fr/fi</td>
</tr>
<tr>
<td>C2</td>
<td>44-86</td>
<td></td>
<td>2.5Y 4/2</td>
<td>2.5Y 7.5YR 5/8</td>
<td>c m p</td>
<td>vfsl/sl</td>
<td>Om</td>
<td>fr/fi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TH</th>
<th>Depth</th>
<th>Horizon Boundaries</th>
<th>Soil Colors</th>
<th>Re-Dox</th>
<th>Texture</th>
<th>Structure</th>
<th>Consistence</th>
<th>Soil Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit.</td>
<td>0-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bituminous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pavement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTM</td>
<td>8-35</td>
<td></td>
<td>10YR 4/6</td>
<td>7.5YR 5/8</td>
<td>8" m m</td>
<td>mix of s,</td>
<td>Om</td>
<td>fr</td>
</tr>
<tr>
<td>C1</td>
<td>35-72</td>
<td></td>
<td>2.5Y 4/4</td>
<td>2.5Y 7.5 YR 5/8</td>
<td>m m p</td>
<td>vfsl & stones w/pockets of sil</td>
<td>Om</td>
<td>fi</td>
</tr>
<tr>
<td>2C</td>
<td>72-93</td>
<td></td>
<td>5Y 4/2</td>
<td></td>
<td>gs</td>
<td>Osg</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TH 3 Soil Class: Basil Till Total Depth 86" Impervious/Limiting Layer Depth NA (og) GW Seepage Depth 42" SHWT 10" (og)

TH 4 Soil Class: Basil Till Total Depth 93" Impervious/Limiting Layer Depth NA (og) GW Seepage Depth 78" SHWT 8" (og)

Comments: 1. TP3 at edge of leach field. (*) Water seepage in pit likely due to leach field.

Revised 1/31/14
Site Evaluation Form

Part A - Soil Profile Description

<table>
<thead>
<tr>
<th>Property Owner:</th>
<th>Dan's Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Location:</td>
<td>2095 Kingstown Rd. South Kingstown</td>
</tr>
<tr>
<td>Date of Test Hole:</td>
<td>4-30-15</td>
</tr>
<tr>
<td>Soil Evaluator:</td>
<td>Brian King</td>
</tr>
<tr>
<td>Weather:</td>
<td>50 degrees - Cloudy</td>
</tr>
<tr>
<td>License Number:</td>
<td>D4010</td>
</tr>
<tr>
<td>Shaded:</td>
<td>No</td>
</tr>
<tr>
<td>Time:</td>
<td>8:30-10:30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TH__5__ Horizon</th>
<th>Depth Inches</th>
<th>Horizon Boundaries</th>
<th>Soil Colors</th>
<th>Re-Dox Features</th>
<th>Texture</th>
<th>Structure</th>
<th>Consistence</th>
<th>Soil Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-5</td>
<td>c</td>
<td>10YR 3/2</td>
<td></td>
<td>fsl</td>
<td>gr</td>
<td>fr</td>
<td></td>
</tr>
<tr>
<td>HTM</td>
<td>5-14</td>
<td>c</td>
<td>10YR 4/6</td>
<td></td>
<td>gs</td>
<td>Osg</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HTM</td>
<td>14-34</td>
<td>c</td>
<td>2.5Y 3/1</td>
<td></td>
<td>vfl/s</td>
<td>Om</td>
<td>fr/ff</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>34-47</td>
<td>c</td>
<td>2.5Y 4/1</td>
<td>7.5YR 5/8</td>
<td>m m p</td>
<td>sil</td>
<td>Om</td>
<td>fr/ff</td>
</tr>
<tr>
<td>C2</td>
<td>47-101</td>
<td>c</td>
<td>2.5Y 4/2</td>
<td>2.5Y 6/1</td>
<td>m m p</td>
<td>vfl/s with pockets of sil</td>
<td>Om</td>
<td>fr/ff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TH__5__ Horizon</th>
<th>Depth</th>
<th>Horizon Boundaries</th>
<th>Soil Colors</th>
<th>Re-Dox Features</th>
<th>Ab. S. Contr.</th>
<th>Texture</th>
<th>Structure</th>
<th>Consistence</th>
<th>Soil Category</th>
</tr>
</thead>
</table>

Comments: * SHWT likely in HTM Horizon 14"-34". Use depth similar to TP 1 through 4.

Revised 1/31/14
Part B

Site Evaluation – to be completed by Soil Evaluator or Class II or III Designer:

Please use the area below to locate:

1. Test holes and bedrock test holes,
2. Approximate direction of due north,
3. Offsets from all test holes to fixed points such as street, utility pole, or other permanent, marked object. *

*OFFSETS MUST BE SHOWN

Key:
- Approximate location of test holes
- Approximate location of bedrock test holes
- Estimated gradient and direction of slope
- Approximate direction of due north

Bedrock THs

<table>
<thead>
<tr>
<th>TH</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Relief and Slope: 2% - 3%

2. Presence of any watercourse, wetlands or surface water bodies, within 200 feet of test holes? If yes, locate on above sketch. NO ☐ YES ☑

3. Restricted Layer or Bedrock within 4' below original ground within 25 feet of test hole? Provide all test hole locations & depths above. NO ☑ YES ☐

4. Presence of existing or proposed private drinking water wells within 200 feet of test holes? If yes, locate on above sketch. NO ☑ YES ☐

5. Public drinking water wells within 500 feet of test holes? If yes, locate on above sketch. NO ☑ YES ☐

6. Is site within the watershed of a public drinking water reservoir or other critical area defined in Rule 38? NO ☑ YES ☐

7. Has soil been excavated from or fill deposited on site? If yes, locate on above sketch. NO ☑ YES ☐

8. Site's potential for flooding or ponding: NONE ☐ SLIGHT ☐ MODERATE ☑ SEVERE ☑

9. Landscape position: Shoulder - foot

10. Vegetation: Pavement, grass & gravel parking

11. Indicate approximate location of property lines and roadways.

12. Additional comments, site constraints or additional information regarding site:

Certification

The undersigned hereby certifies that all information on this application and accompanying forms, submittals and sketches are true and accurate and that I have been authorized by the owner(s) to conduct these necessary field investigations and submit this request.

Part A prepared by: ____________________________ Signature: ____________________________ License #: ____________________________

Part B prepared by: ____________________________ Signature: ____________________________ License #: ____________________________

DO NOT WRITE IN THIS SPACE

Witnessed Soil Evaluation Decision: Concur ☐ Inconclusive ☐ Disclaim ☐

Unwitnessed Soil Evaluations Decision: Accept ☐ Inconclusive ☐ Disclaim ☐

Wet Season Determination required ☐ Additional Field Review Required ☐

Explanation:

__

__

Signature Authorized Agent: ____________________________ Date: ____________________________

Revised 1/31/14
H. Wetland Delineation Report
March 2, 2020

Steven Cabral, PE
Crossman Engineering
151 Centerville Road
Warwick, RI 02886

RE: Freshwater Wetland Delineation
2095 Kingstown Road; A.P. 32-4, Lot 32
South Kingstown, Rhode Island

Dear Mr. Cabral:

Natural Resource Services, Inc. (NRS) has completed the freshwater wetland delineation within and immediately adjacent to the above referenced property. This field work was performed by Edward J. Avizinis, PWS, CPSS on February 28, 2020. The wetland delineation was established in accordance with the standards outlined in Appendix 2 of the Rules and Regulations Governing the Administration and Enforcement of the Freshwater Wetlands Act (250 RICR 150-15-1). These land-use regulations are administered by the RI Department of Environmental Management (DEM), Office of Water Resources (OWR). It is important to note that in accordance with Section 1.8 (C)(4) of these regulations, all delineations performed by wetland consultants are not considered to be accurate for state regulatory purposes until the work is reviewed and approved by the DEM, OWR.

As part of our work, a hand-held GPS unit was used to locate the established wetland flagging. While this location work should not be construed as a professional survey, the data obtained is valuable for preliminary planning purposes. An aerial photograph is attached to this letter. The GPS data has been added as an overlay on the photo to provide a visual representation of the established wetland delineation.

The property is listed in the South Kingstown tax assessor’s database as a 1.23 acre parcel. The property is a vacant parcel with frontage on Kingstown Road.

Flag series A1-A5 depicts the limit of a swamp. The freshwater wetland regulations define a swamp as a wetland which is dominated with woody vegetation, primarily trees, and is greater than three (3) acres in overall size. This wetland extends off property to the north and therefore does appear to meet this three acre threshold. The regulations require the addition of a 50 foot perimeter wetland to the delineated edge of any swamp.
The 50 foot perimeter wetland is considered an extension of the swamp under the freshwater wetland regulations. Any and all proposed land disturbing activities within either the swamp or 50 foot perimeter wetland requires a permit from the DEM, OWR.

In addition, there is a stream present within the swamp. The freshwater wetland regulations require the application of a 100 foot riverbank wetland to each side of this stream. As with the 50 foot perimeter wetland, any proposed construction within the 100 foot riverbank wetland requires a permit from the DEM. There is also an Area Subject to Storm Flowage (ASSF) located along the eastern property boundary, any proposed construction within the ASSF requires a permit from the DEM.

It is important to note that a new state freshwater wetlands law was enacted in July of 2015. This law made changes to the jurisdictional limits currently utilized in the regulations. The Department of Environmental Management (DEM) is writing new regulations which will require buffer zones for all freshwater wetlands. While a comprehensive timeline has not been established for the enactment of these rules, it is anticipated that they will be in effect at some point in 2020. If you submit an application prior to the promulgation of these rules, your project would then be grandfathered under the current setback standards.

Please do not hesitate to contact me if you have questions regarding the field work performed or any of the information presented in this letter of findings.

Very truly yours,

Scott P. Rabideau, PWS
Principal

Enclosures
I. 2016 Previous Design of “Dan’s Place” Grading and Drainage Plan (File #16-0120)
SOIL EROSION AND SEDIMENT CONTROL PLAN
FOR
TOWER HILL LANDINGS ANNEX
2095 KINGSTOWN ROAD (ROUTE 108)
PLAT 32-4, LOT 32
SOUTH KINGSTOWN, RHODE ISLAND
AUGUST 2020

Prepared by: Crossman Engineering
Engineers & Surveyors
151 Centerville Road
Warwick, RI 02886

&

103 Commonwealth Avenue
North Attleboro, MA 02763
<table>
<thead>
<tr>
<th>Soil Erosion and Sediment Control Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>For: Proposed 11 Unit Residential Development</td>
</tr>
<tr>
<td>Tower Hill Landings Annex</td>
</tr>
<tr>
<td>2095 Kingstown Road</td>
</tr>
<tr>
<td>South Kingstown, Rhode Island 02879</td>
</tr>
<tr>
<td>Plat 32-4, Lot 32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner:</th>
<th>Tower Hill Landings, LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>543 Thames Street</td>
</tr>
<tr>
<td></td>
<td>Newport, RI 02840</td>
</tr>
<tr>
<td></td>
<td>Phone: 401-845-2200</td>
</tr>
</tbody>
</table>

| **Operator:** | To Be Determined Upon Contract Award |

<table>
<thead>
<tr>
<th>Estimated Project Dates:</th>
<th>Start Date: December 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completion Date: December 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESC Plan Prepared By:</th>
<th>Crossman Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>103 Commonwealth Ave, Suite 2B</td>
</tr>
<tr>
<td></td>
<td>North Attleboro, MA 02763</td>
</tr>
<tr>
<td></td>
<td>508-695-1700</td>
</tr>
</tbody>
</table>

| **SESC Plan Preparation Date:** | August 2020 |

| **SESC Plan Revision Date:** |

Revision Date: 1/20/2017
OPERATOR CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under the direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that it is the responsibility of the owner/operator to implement and amend the Soil Erosion and Sediment Control Plan as appropriate in accordance with the requirements of the RIPDES Construction General Permit.

Operator Signature: Date

TO BE DETERMINED UPON CONTRACT AWARD

Contractor Representative:
Contractor Title:
Contractor Company Name:
Address:
Phone Number:
Email Address:
TABLE OF CONTENTS

OPERATOR CERTIFICATION ... ii
TABLE OF CONTENTS ... iii
INTRODUCTION ... 1
SOIL EROSION AND SEDIMENT CONTROL PLAN GUIDENCE 1
SECTION 1: SITE DESCRIPTION ... 1
 1.1 Project/Site Information .. 1
 1.3 Natural Heritage Area Information ... 2
 1.4 Historic Preservation/Cultural Resources ... 2
SECTION 2: EROSION, RUNOFF, AND SEDIMENT CONTROL 3
 2.1 Avoid and Protect Sensitive Areas and Natural Features 3
 2.2 Minimize Area of Disturbance .. 3
 2.3 Minimize the Disturbance of Steep Slopes .. 3
 2.4 Preserve Topsoil ... 3
 2.5 Stabilize Soils ... 4
 2.6 Protect Storm Drain Outlets ... 4
 2.7 Establish Temporary Controls for the Protection of Post-Construction Stormwater Treatment Practices .. 5
 2.8 Divert or Manage Run-on from Up-gradient Areas 5
 2.9 Retain Sediment Onsite through Structural and Non-Structural Practices 5
 2.10 Properly Design Constructed Stormwater Conveyance Channels 7
 2.11 Erosion, Runoff, and Sediment Control Measure List 8
SECTION 3: CONSTRUCTION ACTIVITY POLLUTION PREVENTION 9
 3.1 Existing Data of Known Discharges from Site .. 9
 3.2 Prohibited Discharges .. 9
 3.3 Proper Waste Disposal .. 9
 3.4 Spill Prevention and Control ... 10
 3.5 Control of Allowable Non-Stormwater Discharges 10
 3.6 Control Dewatering Practices ... 10
 3.7 Establish Proper Building Material Staging Areas 11
 3.8 Minimize Dust .. 11
 3.9 Designate Washout Areas .. 11
 3.10 Establish Proper Equipment/Vehicle Fueling and Maintenance Practices 12
 3.11 Chemical Treatment for Erosion and Sediment Control 12
 3.12 Construction Activity Pollution Prevention Control Measure List 13
SECTION 4: CONTROL MEASURE INSTALLATION, INSPECTION, and MAINTENANCE .. 14
 4.1 Installation .. 14
 4.2 Monitoring Weather Conditions .. 14
 4.3 Inspections .. 14
 4.4 Maintenance .. 15
 4.5 Corrective Actions ... 16
SECTION 5: AMENDMENTS .. 16
SECTION 6: RECORDKEEPING .. 17
SECTION 7: PARTY CERTIFICATIONS ... 18
LIST OF ATTACHMENTS ... 19
INTRODUCTION

The purpose of erosion, runoff, and sedimentation control measures is to prevent pollutants from leaving the construction site and entering waterways or environmentally sensitive areas during and after construction. This SESC Plan has been prepared prior to the initiation of construction activities to address anticipated worksite conditions. The control measures depicted on the site plan and described in this narrative should be considered the minimum measures required to control erosion, sedimentation, and stormwater runoff at the site. Since construction is a dynamic process with changing site conditions, it is the operator's responsibility to manage the site during each construction phase so as to prevent pollutants from leaving the site. This may require the operator to revise and amend the SESC Plan during construction to address varying site and/or weather conditions, such as by adding or realigning erosion or sediment controls to ensure the SESC Plan remains compliant with the RIPDES Construction General Permit. Records of these changes must be added to the amendment log attached to the SESC Plan, and to the site plans as “red-lined” drawings. Please Note: Even if practices are correctly installed on a site according to the approved plan, the site is only in compliance when erosion, runoff, and sedimentation are effectively controlled throughout the entire site.

It is the responsibility of the site owner and the site operator to maintain the SESC Plan at the site, including all attachments, amendments and inspection records, and to make all records available for inspection by RIDEM during and after construction. (RIPDES CGP - Part III.G)

The site owner, the site operator, and the designated site inspector are required to review the SESC Plan and sign the Party Certification pages (Section 8). The primary contractor (if different) and all subcontractors (if applicable) involved in earthwork or exterior construction activities are also required to review the SESC Plan and sign the certification pages before construction begins.

Any questions regarding the SESC Plan, control measures, inspection requirements, or any other facet of this document may be addressed to the RIDEM Office of Water Resources, at 401-222-4700 or via email: water@dem.ri.gov.

SOIL EROSION AND SEDIMENT CONTROL PLAN GUIDENCE

SECTION 1: SITE DESCRIPTION

1.1 Project/Site Information

Project/Site Name:

- Proposed 11 Unit Residential Development – Tower Hills Landing Annex
- New apartment buildings, parking areas, landscaping, drainage and utility improvements

Project Street/Location:

- 2095 Kingstown Road, South Kingstown, RI 02879
The following are estimates of the construction site area:

- Total Project Area: 1.46 acres
- Total Project Area to be Disturbed: 1.46 acres

☐ Yes ☐ No The Limits of Disturbance have been marked in the field

1.3 Natural Heritage Area Information

RIPDES CGP - Part III.H

Are there any Natural Heritage Areas being disturbed by the construction activity or will discharges be directed to the Natural Heritage Area as a result of the construction activity?

☐ Yes ☐ No

1.4 Historic Preservation/Cultural Resources

Are there any historic properties, historic cemeteries or cultural resources on or near the construction site?
Soil Erosion and Sediment Control Plan
Tower Hill Landings Annex

☐ Yes ☒ No
Describe how this determination was made and summarize state or tribal review comments:

- Site observations and Review of Online Mapping

If yes, describe or refer to documentation which determines the likelihood of an impact on this historic property, historic cemetery or cultural resource and the steps taken to address that impact including any conditions or mitigation measures that were approved by other parties.

SECTION 2: EROSION, RUNOFF, AND SEDIMENT CONTROL

RIPDES Construction General Permit – Part III.J.1 – Erosion, Runoff, and Sediment Controls

2.1 Avoid and Protect Sensitive Areas and Natural Features

Areas of existing and remaining vegetation and areas that are to be protected as identified in the Section 1.6 of the SESC Plan must be clearly identified on the SESC Site Plans for each Phase of Construction. Prior to any land disturbance activities commencing on the site, the Contractor shall physically mark limits of disturbance (LOD) on the site and any areas to be protected within the site, so that workers can clearly identify the areas to be protected.

2.2 Minimize Area of Disturbance

Will >5 acres be disturbed in order to complete this project?

☐ Yes ☒ No

Will <5 acres be disturbed or will disturbance activities be completed within a six (6) month window?

☐ Yes ☒ No

Based on the answers to the above questions will phasing be required for this project?

☐ Yes ☒ No

2.3 Minimize the Disturbance of Steep Slopes

Are steep slopes (>15%) present within the proposed project area?

☐ Yes ☒ No

2.4 Preserve Topsoil

Site owners and operators must preserve existing topsoil on the construction site to the maximum extent feasible and as necessary to support healthy vegetation, promote soil stabilization, and increase stormwater infiltration rates in the post-construction phase of the project.

Will existing topsoil be preserved at the site?

☒ Yes ☐ No
Soil compaction must be minimized by maintaining limits of disturbance throughout construction. In instances where site soils are compacted the site owner and operator must restore infiltration capacity of the compacted soils by tilling or scarifying compacted soils and amending soils as necessary to ensure a minimum depth of topsoil is available in these areas. In areas where infiltrating stormwater treatment practices are located compacted soils must be amended such that they will comply the design infiltration rates.

2.5 Stabilize Soils

Upon completion and acceptance of site preparation and initial installation of erosion, runoff, and sediment controls and temporary pollution prevention measures, the operator shall initiate appropriate temporary or permanent stabilization practices during all phases of construction on all disturbed areas as soon as possible, but not more than fourteen (14) days after the construction activity in that area has temporarily or permanently ceased.

Any disturbed areas that will not have active construction activity occurring within 14 days must be stabilized using the control measures depicted in the SESC Site Plans, in accordance with the RI SESC Handbook, and per manufacturer product specifications.

Only areas that can be reasonably expected to have active construction work being performed within 14 days of disturbance will be cleared/grubbed at any one time. It is NOT acceptable to clear and grub the entire construction site if portions will not be active within the 14-day time frame. Proper phasing of clearing and grubbing activities shall include temporary stabilization techniques for areas cleared and grubbed that will not be active within the 14-day time frame.

All disturbed soils exposed prior to October 15 of any calendar year shall be seeded by that date if vegetative measures are the intended soil stabilization method. Any such areas that do not have adequate vegetative stabilization, as determined by the site operator or designated inspector, by November 15, must be stabilized through the use of non-vegetative erosion control measures. If work continues within any of these areas during the period from October 15 through April 15, care must be taken to ensure that only the area required for that day’s work is exposed, and all erodible soil must be restabilized within 5 working days. In limited circumstances, stabilization may not be required if the intended function of a specific area of the site necessitates that it remain disturbed (i.e. construction of a motocross track).

2.6 Protect Storm Drain Outlets

Temporary or permanent outlet protection must be used to prevent scour and erosion at discharge points through the protection of the soil surface, reduction in discharge velocities, and through the promotion of infiltration. Outlets often have high velocity, high volume flows, and require strong materials that will withstand the forces of stormwater. Storm drain outlet control measures also offer a last line of protection against sediment entering environmentally sensitive areas.

All stormwater outlets that may discharge sediment-laden stormwater flow from the construction site must be protected using the control practices depicted on the approved plan set and in accordance with the RI SESC Handbook.

Will temporary or permanent point source discharges be generated at the site as the result of construction of sediment traps or basins, diversions, and conveyance channels?

☑ Yes ☐ No
2.7 Establish Temporary Controls for the Protection of Post-Construction Stormwater Treatment Practices

Temporary measures shall be installed to protect permanent or long-term stormwater control and treatment measures as they are installed and throughout the construction phase of the project so that they will function properly when they are brought online.

Will long-term stormwater treatment practices be installed at the site?

☑ Yes □ No

The inlets to the proposed sand filter shall be protected with riprap to minimize erosive tendencies from stormwater flowage into the post-construction stormwater facilities.

2.8 Divert or Manage Run-on from Up-gradient Areas

Is stormwater from off-site areas anticipated to flow onto the project area or onto areas where soils will be disturbed?

☑ Yes □ No

Some upstream areas adjacent to the construction site shall flow through the project area and the proposed drainage system. These upstream areas have been accounted for in the drainage system design.

2.9 Retain Sediment Onsite through Structural and Non-Structural Practices

SEDIMENT BARRIERS must be installed along the perimeter areas of the site that will receive stormwater from disturbed areas. This also may include the use of sediment barriers along the contour of disturbed slopes to maintain sheet flow and minimize rill and gully erosion during construction. Installation and maintenance of sediment barriers must be completed in accordance with the maintenance requirements specified by the product manufacturer or the RI SESC Handbook.

Will sediment barriers be utilized at the toe of slopes and other downgradient areas subject to stormwater impacts and erosion during construction?

☑ Yes □ No

Compost filter sock, silt fence, or approved equal shall be installed along the construction site perimeter areas where shown on the Soil Erosion and Sediment Control Plan, which is enclosed in the Site Plan Set. Additional sediment barriers may be required on an as needed basis.

Will sediment barriers be utilized along the contour of slopes to maintain sheet flow and minimize rill and gully erosion during construction?

□ Yes ☑ No

INLET PROTECTION will be utilized to prevent soil and debris from entering storm drain inlets. These measures are usually temporary and are implemented before a site is disturbed. ALL stormwater inlets &/or catch basins that are operational during construction and have the potential to receive sediment-laden stormwater flow from the construction site must be protected using control measures outlined in the RI SESC Handbook.

For more information on inlet protection refer to the RI SESC Handbook, Inlet Protection control measure.
Maintenance
The operator must clean, or remove and replace the inlet protection measures as sediment accumulates, the filter becomes clogged, and/or as performance is compromised. Accumulated sediment adjacent to the inlet protection measures should be removed by the end of the same work day in which it is found or by the end of the following work day if removal by the same work day is not feasible.

Do inlets exist adjacent to or within the project area that require temporary protection?

- [x] Yes
- [] No

There are two existing catchbasins in the existing roadway that require silt sack inlet protection with regular inspection and maintenance requirements. All proposed catchbasin inlets will require temporary inlet protection during construction which shall remain until the site is stabilized.

CONSTRUCTION ENTRANCES will be used in conjunction with the stabilization of construction roads to reduce the amount of sediment tracking off the project. This project has avoided placing construction entrances on poorly drained soils where possible. Where poorly drained soils could not be eliminated, the detail includes subsurface drainage.

Any construction site access point must employ the control measures on the approved SESC site plans and in accordance with the RI SESC Handbook. Construction entrances shall be used in conjunction with the stabilization of construction roads to reduce the amount of mud picked up by construction vehicles. All construction access roads shall be constructed prior to any roadway accepting construction traffic.

The site owner and operator must:

1. Restrict vehicle use to properly designated exit points.
2. Use properly designed and constructed construction entrances at all points that exit onto paved roads so that sediment removal occurs prior to vehicle exit.
3. When and where necessary, use additional controls to remove sediment from vehicle tires prior to exit (i.e. wheel washing racks, rumble strips, and rattle plates).
4. Where sediment has been tracked out from the construction site onto the surface of off-site streets, other paved areas, and sidewalks, the deposited sediment must be removed by the end of the same work day in which the track out occurs. Track-out must be removed by sweeping, shoveling, or vacuuming these surfaces, or by using other similarly effective means of sediment removal.

Will construction entrances be utilized at the proposed construction site?

- [x] Yes
- [] No

A construction entrance is required off the Kingstown Road access point into the site.

STOCKPILE CONTAINMENT will be used onsite to minimize or eliminate the discharge of soil, topsoil, base material or rubble, from entering drainage systems or surface waters. All stockpiles must be located within the limit of disturbance, protected from run-on with the use of temporary sediment barriers and provided with cover or stabilization to avoid contact with precipitation and wind where and when practical.

Stock pile management consists of procedures and practices designed to minimize or eliminate the discharge of stockpiled material (soil, topsoil, base material, rubble) from entering drainage systems or surface waters.

For any stockpiles or land clearing debris composed, in whole or in part, of sediment or soil, you must comply with the following requirements:
1. Locate piles within the designated limits of disturbance.

2. Protect from contact with stormwater (including run-on) using a temporary perimeter sediment barrier.

3. Where practicable, provide cover or appropriate temporary vegetative or structural stabilization to avoid direct contact with precipitation or to minimize sediment discharge.

4. NEVER hose down or sweep soil or sediment accumulated on pavement or other impervious surfaces into any stormwater conveyance, storm drain inlet, or surface water.

5. To the maximum extent practicable, contain and securely protect from wind.

CONSTRUCTED SEDIMENT STRUCTURES

TEMPORARY SEDIMENT TRAPS will be utilized onsite. There will be disturbed drainage areas greater than one acre that will be exposed for longer than six months. Supporting calculations are provided in the Drainage Narrative and Assessment.

Are temporary sediment traps required at the site?

☑ Yes ☐ No

TEMPORARY SEDIMENT BASIN(S) will not be utilized onsite. Every effort must be made to prevent erosion and control it near the source.

Are temporary sediment basins required at the site?

☐ Yes ☑ No

2.10 Properly Design Constructed Stormwater Conveyance Channels

Are temporary stormwater conveyance practices required in order to properly manage runoff within the proposed construction project?

☐ Yes ☑ No
2.11 Erosion, Runoff, and Sediment Control Measure List

It is expected that this table and corresponding Inspection Reports will be amended as needed throughout the construction project as control measures are added or modified.

<table>
<thead>
<tr>
<th>Location/Station</th>
<th>Control Measure Description/Reference</th>
<th>Maintenance Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Limit of Work</td>
<td>Compost Filter Sock</td>
<td>Refer to RISESCH - Section Six: Sediment Control Measures – Straw Wattles, Compost Tubes, and Fiber Rolls</td>
</tr>
<tr>
<td>At all Disturbed Areas</td>
<td>Seed</td>
<td>Refer to RISESCH - Section Four: Erosion Control Measures – Seeding for Temporary Vegetative Cover and Seeding for Permanent Vegetative Cover</td>
</tr>
<tr>
<td>At Sand Filter</td>
<td>Roped off to Control Compaction</td>
<td>Refer to RISESCH – Section Two: Erosion, Runoff, and Sediment Control – 2.1 Minimize Disturbed Area and Protect Natural Features and Soil</td>
</tr>
<tr>
<td>At drop line adjacent to limit of work Tree Protection</td>
<td>Tree Protections, Section Three: Pollution Prevent and Good Housekeeping – Tree Protecting – RI SESC Handbook</td>
<td>The area beyond the drop line shall be roped off to protect existing trees from construction equipment. Inspection of tree protection should be made 1/week, replace as needed.</td>
</tr>
</tbody>
</table>
SECTION 3: CONSTRUCTION ACTIVITY POLLUTION PREVENTION

The purpose of construction activity pollution prevention is to prevent day to day construction activities from causing pollution.

This section describes the key pollution prevention measures that must be implemented to avoid and reduce the discharge of pollutants in stormwater. Example control measures include the proper management of waste, material handling and storage, and equipment/vehicle fueling/washing/maintenance operations.

Where applicable, include RI SESC Handbook or the RI Department of Transportation Standard Specifications for Road and Bridge Construction (as amended) specifications.

3.1 Existing Data of Known Discharges from Site

Are there known discharges from the project area?

☐ Yes ☒ No

Describe how this determination was made:

- Existing Conditions Survey, Online GIS Maps, and Site Observations

Is there existing data on the quality of the known discharges?

☐ Yes ☒ No

3.2 Prohibited Discharges

The following discharges are prohibited at the construction site:

- Contaminated groundwater, unless specifically authorized by the DEM. These types of discharges may only be authorized under a separate DEM RIPDES permit.
- Wastewater from washout of concrete, unless the discharge is contained and managed by appropriate control measures.
- Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds, and other construction materials.
- Fuels, oils, or other pollutants used in vehicle and equipment operation and maintenance. Proper storage and spill prevention practices must be utilized at all construction sites.
- Soaps or solvents used in vehicle and equipment washing.
- Toxic or hazardous substances from a spill or other release.

All types of waste generated at the site shall be disposed of in a manner consistent with State Law and/or regulations.

Will any of the above listed prohibited discharges be generated at the site?

☐ Yes ☒ No

3.3 Proper Waste Disposal

Building materials and other construction site wastes must be properly managed and disposed of in a manner consistent with State Law and/or regulations.
Soil Erosion and Sediment Control Plan
Tower Hill Landings Annex

- A waste collection area shall be designated on the site that does not receive a substantial amount of runoff from upland areas and does not drain directly to a waterbody or storm drain.
- All waste containers shall be covered to avoid contact with wind and precipitation.
- Waste collection shall be scheduled frequently enough to prevent containers from overfilling.
- All construction site wastes shall be collected, removed, and disposed of in accordance with applicable regulatory requirements and only at authorized disposal sites.
- Equipment and containers shall be checked for leaks, corrosion, support or foundation failure, or other signs of deterioration. Those that are found to be defective shall be immediately repaired or replaced.

Is waste disposal a significant element of the proposed project?
- ☐ Yes ☒ No

3.4 Spill Prevention and Control

All chemicals and/or hazardous waste material must be stored properly and legally in covered areas, with containment systems constructed in or around the storage areas. Areas must be designated for materials delivery and storage. All areas where potential spills can occur and their accompanying drainage points must be described. The owner and operator must establish spill prevention and control measures to reduce the chance of spills, stop the source of spills, contain and clean-up spills, and dispose of materials contaminated by spills. The operator must establish and make highly visible location(s) for the storage of spill prevention and control equipment and provide training for personnel responsible for spill prevention and control on the construction site.

Are spill prevention and control measures required for this particular project?
- ☒ Yes ☐ No

3.5 Control of Allowable Non-Stormwater Discharges

Are there allowable non-Stormwater discharges present on or near the project area?
- ☐ Yes ☒ No

Are there any known or proposed contaminated discharges, including anticipated contaminated dewatering operations, planned on or near the project area?
- ☐ Yes ☒ No

3.6 Control Dewatering Practices

Site owners and operators are prohibited from discharging groundwater or accumulated stormwater that is removed from excavations, trenches, foundations, vaults, or other similar points of accumulation, unless such waters are first effectively managed by appropriate control measures.

Examples of appropriate control measures include, but are not limited to, temporary sediment basins or sediment traps, sediment socks, dewatering tanks and bags, or filtration systems (e.g. bag or sand filters) that are designed to remove sediment. Uncontaminated, non-turbid dewatering water can be discharged without being routed to a control.
At a minimum the following discharge requirement must be met for dewatering activities:

1. Do not discharge visible floating solids or foam.

2. To the extent feasible, utilize vegetated, upland areas of the site to infiltrate dewatering water before discharge. In no case will surface waters be considered part of the treatment area.

3. At all points where dewatering water is discharged, utilize velocity dissipation devices.

4. With filter backwash water, either haul it away for disposal or return it to the beginning of the treatment process.

5. Replace and clean the filter media used in dewatering devices when the pressure differential equals or exceeds the manufacturer’s specifications.

6. Dewatering practices must involve the implementation of appropriate control measures as applicable (i.e. containment areas for dewatering earth materials, portable sediment tanks and bags, pumping settling basins, and pump intake protection.)

Is it at all likely that the site operator will need to implement construction dewatering in order to complete the proposed project?

☐ Yes ☒ No

3.7 Establish Proper Building Material Staging Areas

All construction materials that have the potential to contaminate stormwater must be stored properly and legally in covered areas, with containment systems constructed in or around the storage areas. Areas must be designated for materials delivery and storage. Designated areas shall be approved by the site owner/engineer. Minimization of exposure is not required in cases where the exposure to precipitation and to stormwater will not result in the discharge of pollutants, or where exposure of a specific material or product poses little risk of stormwater contamination (such as final products and materials intended for outdoor use).

3.8 Minimize Dust

Dust control procedures and practices shall be used to suppress dust on a construction site during the construction process, as applicable. Precipitation, temperature, humidity, wind velocity and direction will determine amount and frequency of applications. However, the best method of controlling dust is to prevent dust production. This can best be accomplished by limiting the amount of bare soil exposed at one time. Dust Control measures outlined in the RI SESC Handbook shall be followed. Other dust control methods include watering, chemical application, surface roughening, wind barriers, walls, and covers.

3.9 Designate Washout Areas

At no time shall any material (concrete, paint, chemicals) be washed into storm drains, open ditches, streets, streams, wetlands, or any environmentally sensitive area. The site operator must ensure that construction waste is properly disposed of, to avoid exposure to precipitation, at the end of each working day.

Will washout areas be required for the proposed project?

☒ Yes ☐ No
Concrete washout areas will be required for concrete work for concrete drainage structure/pipe installation. The washout area shall be located within the project limits away from any wetland area or buffer zones. The washout area shall be lined with an impervious pvc membrane and surrounded by silt fence or approved equal.

3.10 Establish Proper Equipment/Vehicle Fueling and Maintenance Practices

Vehicle fueling shall not take place within regulated wetlands or buffer zone areas, or within 50-feet of the storm drain system. Designated areas shall be depicted on the SESC Site Plans, or shall be approved by the site owner.

Vehicle maintenance and washing shall occur off-site, or in designated areas depicted on the SESC Site Plans or approved of by the site owner. Maintenance or washing areas shall not be within regulated wetlands or buffer zone areas, or within 50-feet of the storm drain system. Maintenance areas shall be clearly designated, and barriers shall be used around the perimeter of the maintenance area to prevent stormwater contamination.

Construction vehicles shall be inspected frequently for leaks. Repairs shall take place immediately. Disposal of all used oil, antifreeze, solvents and other automotive-related chemicals shall be according to applicable regulations; at no time shall any material be washed down the storm drain or in to any environmentally sensitive area.

3.11 Chemical Treatment for Erosion and Sediment Control

Chemical stabilizers, polymers, and flocculants are readily available on the market and can be easily applied to construction sites for the purposes of enhancing the control of erosion, runoff, and sedimentation. The following guidelines should be adhered to for construction sites that plan to use treatment chemicals as part of their overall erosion, runoff, and sedimentation control strategy.

The U.S. Environmental Protection Agency has conducted research into the relative toxicity of chemicals commonly used for the treatment of construction stormwater discharges. The research conducted by the EPA focused on different formulations of chitosan, a cationic compound, and both cationic and anionic polyacrylamide (PAM). In summary, the studies found significant toxicity resulting from the use of chitosan and cationic PAM in laboratory conditions, and significantly less toxicity associated with using anionic PAM. EPA's research has led to the conclusion that the use of treatment chemicals for erosion, runoff, and sedimentation control requires proper operator training and appropriate usage to avoid risk to aquatic species. In the case of cationic treatment chemicals additional safeguards may be necessary.

Application/Installation Minimum Requirements

If a site operator plans to use polymers, flocculants, or other treatment chemicals during construction the SESC plan must address the following:

1. Treatment chemicals shall not be applied directly to or within 100 feet of any surface water body, wetland, or storm drain inlet.

2. Use conventional erosion, runoff, and sedimentation controls prior to and after the application of treatment chemicals. Use conventional erosion, runoff, and sedimentation controls prior to chemical addition to ensure effective treatment. Chemicals may only be applied where treated stormwater is directed to a sediment control (e.g. temporary sediment basin, temporary sediment trap or sediment barrier) prior to discharge.

3. Sites shall be stabilized as soon as possible using conventional measures to minimize the need to use chemical treatment.

4. Select appropriate treatment chemicals. Chemicals must be selected that are appropriately suited to the types of soils likely to be exposed during construction and to the expected turbidity, pH,
and flow rate of stormwater flowing into the chemical treatment system or treatment area. Soil testing is essential. Using the wrong form of chemical treatment will result in some form of performance failure and unnecessary environmental risk.

5. **Minimize discharge risk from stored chemicals.** Store all treatment chemicals in leak-proof containers that are kept under storm-resistant cover and surrounded by secondary containment structures (e.g., spill berms, decks, spill containment pallets), or provide equivalent measures, designed and maintained to minimize the potential discharge of treatment chemicals in stormwater or by any other means (e.g., storing chemicals in covered areas or having a spill kit available on site).

6. **Use chemicals in accordance with good engineering practices and specifications of the chemical provider/supplier.** You must also use treatment chemicals and chemical treatment systems in accordance with good engineering practices, and with dosing specifications and sediment removal design specifications provided by the supplier of the applicable chemicals, or document specific departures from these practices or specifications and how they reflect good engineering practice.

Will chemical stabilizers, polymers, flocculants or other treatment chemicals be utilized on the proposed construction project?

- [] Yes
- [x] No

3.12 Construction Activity Pollution Prevention Control Measure List

It is expected that this table will be amended as needed throughout the construction project.

<table>
<thead>
<tr>
<th>Phase No. #</th>
<th>Location/Station</th>
<th>Control Measure Description/Reference</th>
<th>Maintenance Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On site +100 ft away from wetlands and out of regulatory buffers</td>
<td>Vehicle Fueling, Maintenance and Washing</td>
<td>Refer to RISESCH - Section Four: Erosion Control Measures – Vehicle Fueling, Maintenance and Washing</td>
</tr>
<tr>
<td></td>
<td>On site +100 ft away from wetlands and out of regulatory buffers</td>
<td>Concrete Washouts</td>
<td>Refer to RISESCH - Section Three: Pollution Prevention and Good Housekeeping – Concrete Washouts</td>
</tr>
<tr>
<td></td>
<td>Project Wide</td>
<td>Street Sweeping</td>
<td>Refer to RISESCH - Section Three: Pollution Prevention and Good Housekeeping – Street Sweeping</td>
</tr>
<tr>
<td></td>
<td>Project Wide</td>
<td>Dust Control</td>
<td>Refer to RISESCH - Section Three: Pollution Prevention and Good Housekeeping – Dust Control</td>
</tr>
<tr>
<td></td>
<td>Dewatering, if Required</td>
<td>Filter Ring or Bag</td>
<td>Refer to RISESCH – Section Six: Sediment Control Measures – Portable Sediment Tanks and Bags</td>
</tr>
</tbody>
</table>
SECTION 4: CONTROL MEASURE INSTALLATION, INSPECTION, and MAINTENANCE

4.1 Installation

Complete the installation of temporary erosion, runoff, sediment, and pollution prevention control measures by the time each phase of earth-disturbance has begun. All stormwater control measures must be installed in accordance with good judgment, including applicable design and manufacturer specifications. Installation techniques and maintenance requirements may be found in manufacturer specifications and/or the RI SESC Handbook.

4.2 Monitoring Weather Conditions

Anticipating Weather Events - Care will be taken to the best of the operator’s ability to avoid disturbing large areas prior to anticipated precipitation events. Weather forecasts must be routinely checked, and in the case of an expected precipitation event of over 0.25-inches over a 24-hour period, it is highly recommended that all control measures should be evaluated and maintained as necessary, prior to the weather event. In the case of an extreme weather forecast (greater than one-inch of rain over a 24-hour period), additional erosion/sediment controls may need to be installed.

Storm Event Monitoring For Inspections - At a minimum, storm events must be monitored and tracked in order to determine when post-storm event inspections must be conducted. Inspections must be conducted and documented at least once every seven (7) calendar days and within twenty-four (24) hours after any storm event, which generates at least 0.25 inches of rainfall per twenty-four (24) hour period and/or after a significant amount of runoff or snowmelt.

The weather gauge station and website that will be utilized to monitor weather conditions on the construction site is as follows:

https://www.wunderground.com/weather/us/ri/south-kingstown

4.3 Inspections

Minimum Frequency - Each of the following areas must be inspected by or under the supervision of the owner and operator at least once every seven (7) calendar days and within twenty-four (24) hours after any storm event, which generates at least 0.25 inches of rainfall per twenty-four (24) hour period and/or after a significant amount of runoff or snowmelt:

a. All areas that have been cleared, graded, or excavated and where permanent stabilization has not been achieved;

b. All stormwater erosion, runoff, and sediment control measures (including pollution prevention control measures) installed at the site;

c. Construction material, unstabilized soil stockpiles, waste, borrow, or equipment storage, and maintenance areas that are covered by this permit and are exposed to precipitation;

d. All areas where stormwater typically flows within the site, including temporary drainage ways designed to divert, convey, and/or treat stormwater;

e. All points of discharge from the site;

f. All locations where temporary soil stabilization measures have been implemented;
g. All locations where vehicles enter or exit the site.

Reduced Inspection Frequency - If earth disturbing activities are suspended due to frozen conditions, inspections may be reduced to a frequency of once per month. The owner and operator must document the beginning and ending dates of these periods in an inspection report.

Qualified Personnel – The site owner and operator are responsible for designating personnel to conduct inspections and for ensuring that the personnel who are responsible for conducting the inspections are “qualified” to do so. A "qualified person" is a person knowledgeable in the principles and practices of erosion, runoff, sediment, and pollution prevention controls, who possesses the skills to assess conditions at the construction site that could impact stormwater quality, and the skills to assess the effectiveness of any stormwater controls selected and installed to meet the requirements of the permit.

Recordkeeping Requirements - All records of inspections, including records of maintenance and corrective actions must be maintained with the SESC Plan. Inspection records must include the date and time of the inspection, and the inspector's name, signature, and contact information.

General Notes

- A separate inspection report will be prepared for each inspection.

- The Inspection Reference Number shall be a combination of the RIPDES Construction General Permit No - consecutively numbered inspections. ex Inspect reference number for the 4th inspection of a project would be: RIR10####-4

- Each report will be signed and dated by the Inspector and must be kept onsite.

- Each report will be signed and dated by the Site Operator.

- The corrective action log contained in each inspection report must be completed, signed, and dated by the site operator once all necessary repairs have been completed.

- It is the responsibility of the site operator to maintain a copy of the SESC Plan, copies of all completed inspection reports, and amendments as part of the SESC Plan documentation at the site during construction.

Failure to make and provide documentation of inspections and corrective actions under this part constitutes a violation of your permit and enforcement actions under 46-12 of R.I. General Laws may result.

4.4 Maintenance

Maintenance procedures for erosion and sedimentation controls and stormwater management structures/facilities are described on the SESC Site Plans and in the RI SESC Handbook.

Site owners and operators must ensure that all erosion, runoff, sediment, and pollution prevention controls remain in effective operating condition and are protected from activities that would reduce their effectiveness. Erosion, runoff, sedimentation, and pollution prevention control measures must be maintained throughout the course of the project.

Note: It is recommended that the site operator designates a full-time, on-site contact person responsible for working with the site owner to resolve SESC Plan-related issues.
4.5 Corrective Actions

If, in the opinion of the designated site inspector, corrective action is required, the inspector shall note it on the inspection report and shall inform the site operator that corrective action is necessary. The site operator must make all necessary repairs whenever maintenance of any of the control measures instituted at the site is required.

In accordance with the RI SESC Handbook, the site operator shall initiate work to fix the problem immediately after its discovery, and complete such work by the close of the next work day, if the problem does not require significant repair or replacement, or if the problem can be corrected through routine maintenance.

When installation of a new control or a significant repair is needed, site owners and operators must ensure that the new or modified control measure is installed and made operational by no later than seven (7) calendar days from the time of discovery where feasible. If it is infeasible to complete the installation or repair within seven (7) calendar days, the reasons why it is infeasible must be documented in the SESC Plan along with the schedule for installing the control measures and making it operational as soon as practicable after the 7-day timeframe. Such documentation of these maintenance procedures and timeframes should be described in the inspection report in which the issue was first documented. If these actions result in changes to any of the control measures outlined in the SESC Plan, site owners and operators must also modify the SESC Plan accordingly within seven (7) calendar days of completing this work.

SECTION 5: AMENDMENTS

This SESC Plan is intended to be a working document. It is expected that amendments will be required throughout the active construction phase of the project. **Even if practices are installed on a site according to the approved plan, the site is only in compliance when erosion, runoff, and sedimentation are effectively controlled throughout the entire site for the entire duration of the project.**

The SESC Plan shall be amended within seven (7) days whenever there is a change in design, construction, operation, maintenance or other procedure which has a significant effect on the potential for the discharge of pollutants, or if the SESC Plan proves to be ineffective in achieving its objectives (i.e. the selected control measures are not effective in controlling erosion or sedimentation).

In addition, the SESC Plan shall be amended to identify any new operator that will implement a component of the SESC Plan.

All revisions must be recorded in the Record of Amendments Log Sheet, which is contained in Attachment G of this SESC Plan, and dated red-lined drawings and/or a detailed written description must be appended to the SESC Plan. Inspection Forms must be revised to reflect all amendments. Update the Revision Date and the Version # in the footer of the Report to reflect amendments made.

All SESC Plan Amendments, except minor non-technical revisions, must be approved by the site owner and operator. Any amendments to control measures that involve the practice of engineering must be reviewed, signed, and stamped by a Professional Engineer registered in the State of RI.

The amended SESC plan must be kept on file at the site while construction is ongoing and any modifications must be documented.

Attach a copy of the Amendment Log.
SECTION 6: RECORDKEEPING
RIPDES Construction General Permit – Parts III.D, III.G, III.J.3.b.iii, & V.O

It is the site owner and site operator’s responsibility to have the following documents available at the construction site and immediately available for RIDEM review upon request:

- A copy of the fully signed and dated SESC Plan, which includes:
 - A copy of the General Location Map
 INCLUDED AS ATTACHMENT A
 - A copy of all SESC Site Plans
 INCLUDED AS ATTACHMENT B
 - A copy of the RIPDES Construction General Permit
 INCLUDED AS ATTACHMENT C
 - A copy of any regulatory permits (RIDEM Freshwater Wetlands Permit, CRMC Assent, RIDEM Water Quality Certification, RIDEM Groundwater Discharge Permit, RIDEM RIPDES Construction General Permit authorization letter, etc.)
 INCLUDED AS ATTACHMENT D
 - The signed and certified NOI form or permit application form
 INCLUDED AS ATTACHMENT E
 - Completed Inspection Reports w/Completed Corrective Action Logs
 INCLUDED AS ATTACHMENT F
 - SESC Plan Amendment Log
 INCLUDED AS ATTACHMENT G
SECTION 7: PARTY CERTIFICATIONS
RIPDES Construction General Permit – Part V.G

All parties working at the project site are required to comply with the Soil Erosion and Sediment Control Plan (SESC Plan including SESC Site Plans) for any work that is performed on-site. The site owner, site operator, contractors and sub-contractors are encouraged to advise all employees working on this project of the requirements of the SESC Plan. A copy of the SESC Plan may be obtained by contacting the site owner or site operator.

The site owner and site operator and each subcontractor engaged in activities at the construction site that could impact stormwater must be identified and sign the following certification statement.

I acknowledge that I have read and understand the terms and conditions of the Soil Erosion and Sediment Control (SESC) Plan for the above designated project and agree to follow the control measures described in the SESC Plan and SESC Site Plans.

Site Owner:
Tower Hill Landings, LLC
543 Thames Street
Newport, RI 02840
401-845-2200

signature/date

Site Operator:

signature/date

Designated Site Inspector:

signature/date

SubContractor SESC Plan Contact:

signature/date
LIST OF ATTACHMENTS

Attachment A - General Location Map
Attachment B - SESC Site Plans
Attachment C - Copy of RIPDES Construction General Permit and Authorization to Discharge
Attachment D - Copy of Other Regulatory Permits
Attachment E - Copy of RIPDES NOI
Attachment F - Inspection Reports w/ Corrective Action Log
Attachment G - SESC Plan Amendment Log
Attachment A - General Location Map
Attachment B - SESC Site Plans
Attachment C - Copy of RIPDES Construction General Permit and Authorization to Discharge

An electronic copy can be downloaded at:
http://www.dem.ri.gov/programs/benviron/water/permits/ripdes/stwater/conindex.htm
Attachment D - Copy of Other Regulatory Permits
Attachment E - Copy of RIPDES NOI
Attachment F - Inspection Reports w/ Corrective Action Log
SESC Plan Inspection Report

Project Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Tower Hill Landings Annex</td>
</tr>
<tr>
<td>Location</td>
<td>2095 Kingstown Road, South Kingstown, RI 02879</td>
</tr>
</tbody>
</table>

DEM Permit No.

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td></td>
</tr>
</tbody>
</table>

Inspection Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector Name</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Start/End Time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection Type</td>
<td>Weekly ☐ Pre-storm event ☐ During storm event ☐ Post-storm event ☐ Other</td>
</tr>
</tbody>
</table>

Weather Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Duration (hrs):</td>
<td></td>
</tr>
<tr>
<td>Approximate Rainfall (in):</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Gauge Location & Source:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather at time of this inspection:</td>
<td></td>
</tr>
</tbody>
</table>

Check statement that applies then sign and date below:

☐ I, as the designated Inspector, certify that this site has been inspected as required by regulation and I have determined that maintenance and corrective actions are not required at this time.

☐ I, as the designated Inspector, certify that this site has been inspected as required by regulation and I have made the determination that the site requires corrective actions. The required corrective actions are noted within this inspection report.

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector:</td>
<td>Print Name Signature Date</td>
</tr>
</tbody>
</table>

The Site Operator acknowledges by his/her signature, the receipt of this SESC Plan inspection report and its findings. He/she acknowledges that all recommended corrective actions must be completed and documentation of all such corrective actions must be made in this inspection report per applicable regulations.

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>Print Name Signature Date</td>
</tr>
</tbody>
</table>
Site-specific Control Measures
Number the structural and non-structural stormwater control measures identified in the SESC Plan and on the SESC Site Plans and list them below (add as necessary). Bring a copy of this inspection form and any applicable SESC Site Plans with you during your inspections. This list will assist you to inspect all control measures at your site.

FILL THIS TABLE USING THE SESC PLAN TABLES 2.11 & 3.12.

<table>
<thead>
<tr>
<th>Location/Station</th>
<th>Control Measure Description</th>
<th>Installed & Operating Properly?</th>
<th>Assoc. Photo/ Figure #</th>
<th>Corrective Action Needed (Yes or No; if ‘Yes’, please detail action required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>☐ Yes ☐ No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Add more as necessary)
General Site Issues

Below are some general site issues that should be assessed during inspections. Please **customize** this list as needed for conditions at the site.

<table>
<thead>
<tr>
<th>Compliance Question</th>
<th>Assoc. Photo/ Figure #</th>
<th>Corrective Action Needed (If 'Yes', please detail action required and include location/station)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Have all control measures been installed as specified in the RISESC Handbook and prior to any earth disturbing activities?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>2. Are appropriate limits of disturbance (LOD) established?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>3. Are controls that limit runoff from exposed soils by diverting, retaining, or detaining flows (such as check dams, sediment basins, etc.) in place?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>4. Are all temporary conveyance practices installed correctly and functioning as designed?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>5. Has maintenance been performed as required to ensure continued proper function of all temporary conveyances practices?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>6. Were all exposed soils seeded by October 15th?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>7. Have soils been stabilized where earth disturbance activities have permanently or temporarily ceased on any portion of the site and will not resume for more than 14 days?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>8. In instances where adequate vegetative stabilization was not established by November 15th, have non-vegetative erosion control measures must be employed?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>9. If work is to continue from October 15th through April 15th, are steps taken to ensure that only the day’s work area will be exposed and all erodible soil is stabilized within 5 working days?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>10. Have inlet protection measures (such as fabric drop inlet protection, curb drop inlet protection, etc.) been properly installed?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>11. Has the operator cleaned and maintained inlet protection measures when needed?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>12. Has the operator removed accumulated sediment adjacent to inlet protection measures within 24 hours of detection?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Compliance Question</td>
<td>Assoc. Photo/ Figure #</td>
<td>Corrective Action Needed (If ‘Yes’, please detail action required and include location/station)</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Has the operator properly installed outlet protection (such as riprap, turf mats, etc.) at all temporary and permanent discharge points?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Are all outlet protection measures functioning properly in order to reduce discharge velocity, promote infiltration, and eliminate scour?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Have all discharge points been inspected to ensure the prevention of scouring and channel erosion?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Have sediment controls been installed along perimeter areas that will receive stormwater from earth disturbing activities?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Is the operator maintaining sediment controls in accordance with the requirements in the RI SESC Handbook?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Have temporary sediment barriers been installed around permanent infiltration areas (such as bioretention areas, infiltration basins, etc.)?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Have staging areas and equipment routing been implemented to avoid compaction where permanent infiltration areas will be located?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Are surface outlet structures (such as skimmers, siphons, etc.) installed for each temporary sediment basin? [Exception: frozen conditions]</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Have all temporary sediment basins or traps been inspected and maintained as required to ensure proper function?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Does the project include the use of polymers, flocculants, or other chemicals to control erosion, sedimentation, or runoff from the site?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Are all chemicals being managed in accordance with Appendix J of the RISESC Handbook and current best management practices?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Has the site operator taken steps to prohibit the following pollutant discharges on the site?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Contaminated groundwater.</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Compliance Question</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Wastewater from washout of concrete; unless properly contained, managed, and disposed of.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds, and other construction products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuels, oils, or other pollutants used in vehicle and equipment operation and maintenance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soaps or solvents used in vehicle and equipment washing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic or hazardous substances from a spill or other release.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the operator using properly constructed entrances/exits to the site so sediment removal occurs prior to vehicles exiting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If needed, are additional controls (such as rumble strips, rattle plates, etc.) in place to remove sediment from tires prior to exiting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is sediment track-out being removed by the end of the same workday in which it occurs (via sweeping, shoveling, or vacuuming)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are all wastes generated at the site being managed and properly disposed of by the end of each workday?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are all chemicals and hazardous waste materials stored properly in covered areas and surrounded by containment control systems?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the operator established highly visible locations for the storage of spill prevention and control equipment on the construction site?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are allowable non-stormwater discharges being managed properly with adequate controls?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the site operator properly managing groundwater or stormwater that is removed from excavations, trenches, or similar points of accumulation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are proper procedures and controls in place for the storage of materials that may discharge pollutants if</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance Question</td>
<td>Assoc. Photo/Figure #</td>
<td>Corrective Action Needed (If ‘Yes’, please detail action required and include location/station)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>exposed to stormwater?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are stockpiles located within the limits of disturbance?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Are stockpiles being protected from contact with stormwater using a temporary sediment barrier?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Where needed, has cover or appropriate temporary vegetative or structural stabilization been utilized for stockpiles?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Is the operator effectively managing the generation of dust through the use of water, chemicals, or minimization of exposed soil?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Are designated washout areas (such as wheel washing stations, washout for concrete, paint, stucco, etc.) clearly marked on the site?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>Are vehicle fueling and maintenance areas properly located to prevent pollutants from impacting stormwater and sensitive receptors?</td>
<td>☐ Yes ☐ No ☐ N/A</td>
<td></td>
</tr>
<tr>
<td>(Other)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(add more as necessary)
General Field Comments:
Photos:

<table>
<thead>
<tr>
<th>Photo #:</th>
<th>Station:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(add more as necessary)
Corrective Action Log

TO BE FILLED OUT BY SITE OPERATOR

Describe repair, replacement, and maintenance of control measures, actions taken, date completed, and note the person that completed the work.

<table>
<thead>
<tr>
<th>Location/Station</th>
<th>Corrective Action</th>
<th>Date Completed</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operator Signature: ___________________________ Date: _____________
Attachment G – SESC Plan Amendment Log
Amendment Log

TO BE FILLED OUT BY SITE OPERATOR

Describe amendment(s) to be made to the SESC Plan, the date, and the person/title making the amendment. ALL amendments must be approved by the Site Owner.

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Description of Amendment</th>
<th>Amended by: Person/Title</th>
<th>Site Owner Must Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add more lines/pages as necessary
LONG TERM OPERATION AND MAINTENANCE PLAN
FOR
TOWER HILL LANDINGS ANNEX
2095 KINGSTOWN ROAD (ROUTE 108)
PLAT 32-4, LOT 32
SOUTH KINGSTOWN, RHODE ISLAND
AUGUST 2020

Prepared by: Crossman Engineering
Engineers & Surveyors
151 Centerville Road
Warwick, RI 02886

&

103 Commonwealth Avenue
North Attleboro, MA 02763
Stormwater Management System – Maintenance Operation

Owner Contact Information:
Tower Hill Landings, LLC
543 Thames Street
Newport, RI 02840
Phone: 401-845-2200

In order to minimize the stormwater management system deterioration, the owner shall adhere to the following Operation and Maintenance Plan as well as any additional requirements pertaining to inspection and maintenance measures for this site provided in Appendices E and G of the Rhode Island Stormwater Design and Installation Standards Manual. Upon project completion, the site owner shall adhere to the following maintenance recommendations.

1. Catchbasins and Manholes

An inspection shall occur on an annual basis by qualified personnel to ensure proper operation. The inspection shall, as a minimum, concentrate on the following:

- Damage to grate
- Evidence of standing water
- Presence of Debris
- Structural alignment/integrity

2. Sediment Removal

Following construction, sediment removal shall be conducted as deemed necessary by the system inspections. All removed sediment is to be tested to determine pollutant content. The sediment is to be properly disposed in upland areas based upon the test results and local, state, and federal regulations.

3. Stormceptor Pretreatment Chamber

Regular inspections and maintenance of the Stormceptor devices are required to minimize stormwater pollution and flooding. Inspections shall occur following post-construction, after every storm event with greater than one inch of rainfall, and immediately after oil, fuel or other chemical spills. Inspections shall be conducted every other month for the first year of operation, and a minimum of two times per year for the following years. The Stormceptors are required to be cleaned annually and whenever sediment depths reach 15% of the unit’s total storage capacity (8” depth for the STC-900).

If the system is not maintained regularly, sediment removal efficiency may be reduced, oil spills may not be properly captured, and clogging (resulting in flooding) may occur. The Stormceptor devices shall be inspected and maintained by professional vacuum
cleaning service providers with experience in the maintenance of underground tanks, sewers, and catchbasins. Typically, maintenance cleaning of accumulated sediment is performed with a vacuum truck. If oil is present, oil is typically pumped into a separate containment using a small pump and tubing. The disposal of sediment or recovered pollutants shall be at an approved and permitted upland location. If any parts or pieces of the Stormceptor devices break or become damaged, the local supplier of authentic Stormceptor components must be contacted to replace broken parts. The “Stormceptor® STC Inspection and Maintenance Information” shall be followed to insure proper function and performance.

4. Underground Detention System

The underground detention chambers shall be inspected annually and after storm events greater than or equal to the 1-year, 24-hour Type III precipitation event to identify build-ups of sediment, litter, or debris. The inlets and outlets shall also be inspected quarterly for clogging. When the accumulated sediment volume exceeds 5% of the total storage volume, accumulated material shall be disposed of at an approved and permitted upland location. The underground detention systems shall also be inspected routinely for structural integrity. Inspections shall occur at the inlet drain manholes, clean out ports, and outlet control structure for sediment accumulation. If the outlet control orifices or pipes are clogged, they shall be cleaned manually during the time of inspection. If sediment, debris, trash, etc. accumulation is observed in any of the system laterals, the system shall be flushed and/or vacuumed by a professional vacuum cleaning service provider.

5. Sand Filter

Sand filters shall be inspected annually and after storm events greater than or equal to the 1-year, 24-hour Type III precipitation event. Sediment shall be removed from the filter bed when sediment accumulation exceeds one inch. All oil, sludge, sediment, solids, trash, debris and floatable material shall be removed from the sand filter. Materials deposited on the surface of the sand filter (e.g., trash and litter) shall be removed manually. Oil and sludge removal shall be accomplished via catch vac or vactor truck and the sand filter bottom shall be restored to its original design criteria. After cleaning, all resulting waste including oil, sludge, sediment, and water shall be disposed of in accordance with all applicable federal and local regulations.

If standing water is observed more than 48 hours after a storm event, then the top 6 inches of sand shall be removed and replaced with new materials. If discolored or contaminated material is found below this removed surface then that material shall also be removed and replaced until all contaminated sand has been removed from the filter chamber. The sand shall be disposed of in accordance with all applicable federal and local regulations. All structural components, which include the outlet structure, valves, pipes, frame and grate, cover, underdrain system, and structural concrete, shall be inspected and any deficiencies shall be reported.
6. **Permeable Pavement**

Permeable pavements performing as infiltration practices require regular vacuum sweeping or hosing (minimum every three months or as recommended by manufacturer) to keep the surface from clogging. Maintenance frequency needs may be more or less depending on the traffic volume at the site. The site should be inspected regularly to ensure that the paving surface drains properly after storms.

Inspect the surface annually for deterioration or spalling. If surface needs to be repaired, ensure that it is not repaved or resealed with impermeable materials. Maintenance activities include the following: minimize use of sand and salt in winter months, keep adjacent landscape areas well maintained and stabilized (erosion gullying quickly corrected), post signs identifying permeable pavement, mow and reseed grass pavers as needed, and add joint material (e.g., sand) periodically to replace material that has been transported from paving stones/bricks. Attach rollers to the bottoms of snowplows to prevent them from catching on the edges of grass pavers and some paving stones.

7. **Street and Parking Lot Sweeping**

Annual parking lot and driveway sweeping of non-porous pavement shall be conducted during the spring of every year. Some debris collected from streets and parking lots may be regulated as a hazardous waste. For these cases, debris must be disposed of in accordance with appropriate practice and applicable regulatory standards. Appendix A of the *Rules and Regulations for Composting Facilities and Solid Waste Management Facilities*, which is entitled “Management of Street Sweepings in Rhode Island,” shall be reviewed. For further information, contact the DEM Office of Waste Management.

8. **Deicing and Salt Storage**

Deicing and sanding operations are often necessary for safety during winter storms; however, the materials used create water quality problems. Use deicing chemicals and sand judiciously. The information in Table G-1 from Appendix G of the RISDISM shall be utilized when selecting a deicer.

9. **Snow Disposal**

Improper snow disposal can be a threat to public health and the environment. Disposal shall consider site selection, site preparation and maintenance, and emergency snow disposal locations and procedures. Refer to DEM’s Snow Disposal Policy for more details on these topics. Snow storage in the sand filter or on permeable pavement is not allowed.
Appendix

Stormwater Management Systems Inspection and Maintenance Log

Sand/Organic Filter System Operation, Maintenance, and Management Inspection Checklist

Underground Detention System Operation, Maintenance, and Management Inspection Checklist

Permeable Pavement Operation, Maintenance, and Management Inspection Checklist

Stormceptor® STC Inspection and Maintenance Information

BMP Location Plan

Stormwater Facility Maintenance Agreement
Stormwater Management Systems
Inspection and Maintenance Log

Site: Tower Hill Landings Annex
Site Address: 2095 Kingstown Road, South Kingstown, RI
Date:
Inspector:

<table>
<thead>
<tr>
<th>Item</th>
<th>Inspection OK</th>
<th>Service Required</th>
<th>Service Performed</th>
<th>Supervisor Notified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Catch basins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Sediment and debris accumulation within 6" of Outlet Service Required</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>1.2 Frame and Grate in Good Condition</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>1.3 Inlet and Outlet Pipes Free of Debris</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>1.4 Integrity of Catch basin Structure</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>1.5 Describe Service Provided:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 Manholes and Outlet Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Invert free of sediment and debris</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.2 Sediment and debris accumulation within 6” of Outlet Service Required</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.3 Frame and Cover in Good Condition</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.4 Inlet and Outlet Pipes free of debris</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.5 Integrity of Manhole Structure</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.6 Describe Service Provided:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3.1</td>
<td>Erosion of maintenance path</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>3.2</td>
<td>Evidence of erosion within landscape areas or on embankments.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>3.3</td>
<td>Describe Service Provided:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 4.0 | General Comments: | | | | |
Sand/Organic Filter Operation, Maintenance, and Management Inspection Checklist

<table>
<thead>
<tr>
<th>Project:</th>
<th>Location:</th>
<th>Site Status:</th>
<th>Date:</th>
<th>Time:</th>
<th>Inspector:</th>
</tr>
</thead>
</table>

MAINTENANCE ITEM | **SATISFACTORY / UNSATISFACTORY** | **COMMENTS** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Debris Cleanout</td>
<td>(Annual, After Major Storms)</td>
<td></td>
</tr>
<tr>
<td>Contributing areas clean of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration facility clean of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet and outlets clear of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Oil and Grease</td>
<td>(Annual, After Major Storms)</td>
<td></td>
</tr>
<tr>
<td>No evidence of filter surface clogging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activities in drainage area minimize oil and grease entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Vegetation</td>
<td>(Semi-annually)</td>
<td></td>
</tr>
<tr>
<td>Contributing drainage area stabilized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area mowed and clipping removed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX E: GUIDANCE FOR DEVELOPING OPERATION AND MAINTENANCE PLANS
<table>
<thead>
<tr>
<th>Maintenance Item</th>
<th>Satisfactory / Unsatisfactory</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water holding chambers at normal pool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of leakage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sediment Deposition (Annual, After Major Storms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter chamber free of sediments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentation chamber not more than half full of sediments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Structural Components (Annual, After Major Storms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of structural deterioration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any grates are in good condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of spalling or cracking of structural parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Outlet/Overflow Spillway (Annual, After Major Storms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good condition, no need for repairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of erosion (if draining into natural channel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Overall Function of Facility (Annual, After Major Storms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of flow bypassing facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No noticeable odors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E: GUIDANCE FOR DEVELOPING OPERATION AND MAINTENANCE PLANS
Underground Detention System Operation, Maintenance, and Management Inspection Checklist

Project:

Location:

Site Status:

Date:

Time:

Inspector:

<table>
<thead>
<tr>
<th>Maintenance Item</th>
<th>Satisfactory / Unsatisfactory</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Debris Cleanout (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench/chamber or basin surface clear of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflow pipes clear of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overflow spillway clear of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet area clear of debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sediment Traps or Forebays (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obviously trapping sediment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greater than 50% of storage volume remaining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Dewatering (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench/chamber or basin dewater between storms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sediment Cleanout of Trench/Chamber or Basin (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAINTENANCE ITEM</td>
<td>SATISFACTORY / UNSATISFACTORY</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>No evidence of sedimentation in trench/chamber or basin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment accumulation doesn't yet require cleanout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Inlets (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Outlet/Overflow Spillway (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good condition, no need for repair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence of erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Aggregate Repairs (Annual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface of aggregate clean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top layer of stone does not need replacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench/Chamber or basin does not need rehabilitation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Actions to be Taken:

Permeable Pavement Operation, Maintenance, and Management Inspection Checklist

Project:
Location:
Site Status:
Date:
Time:
Inspector:

<table>
<thead>
<tr>
<th>MAINTENANCE ITEM</th>
<th>SATISFACTORY / UNSATISFACTORY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sediment and Debris Cleanout</td>
<td>(3 Months or Manufacturer’s Recommendation)</td>
<td></td>
</tr>
<tr>
<td>Contributing area free of sediment and debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributing area stabilized and mown, with grass clippings removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface free of sediment and debris (e.g., mulch, leaves, trash, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No signs of clogging (e.g., standing water)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface does not require vacuuming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Dewatering</td>
<td>(Monthly)</td>
<td></td>
</tr>
<tr>
<td>Permeable pavement dewater between storms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Underdrain Outfall, if present</td>
<td>(Annual)</td>
<td></td>
</tr>
<tr>
<td>No evidence of erosion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX E: GUIDANCE FOR DEVELOPING OPERATION AND MAINTENANCE PLANS
<table>
<thead>
<tr>
<th>MAINTENANCE ITEM</th>
<th>SATISFACTORY / UNSATISFACTORY</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Surface Repairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface has not been sealed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No evidence of surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deterioration or spalling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface (top and base course)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>does not need to be replaced</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
__
__
__

Actions to be Taken:
__
__
__
Stormceptor® STC
Inspection and Maintenance Information

Stormceptor® Inspection and Maintenance
Regular inspection and maintenance is a proven, cost-effective way to maximize water resource protection for all stormwater pollution control practices, and are required to insure proper functioning of the Stormceptor System. Both inspection and maintenance of the Stormceptor system is easily performed from the surface. Stormceptor’s patented technology has no moving parts, simplifying the inspection and maintenance process.

Please refer to the following information and guidelines before conducting inspection and maintenance activities.

When is inspection needed?
- Post-construction inspection is required prior to putting the Stormceptor System into service.
- Routine inspections are recommended during the first year of operation to accurately assess the sediment accumulation.
- Specifically for New Jersey installations, regulations require all BMPs to be inspected a minimum four times per year and after every storm with greater than one inch of rainfall.
- Inspection frequency in subsequent years is based on the maintenance plan developed in the first year.
- Inspections should also be performed immediately after an oil, fuel or other chemical spill.

When is maintenance cleaning needed?
- For optimum performance, the unit should be cleaned out once the sediment depth reaches 15% of the unit’s total storage capacity (see Table 1). Generally, the minimum cleaning frequency is once annually, although the frequency can be based on historical inspection results.
- The unit should be cleaned out immediately after an oil, fuel or chemical spill.

Table 1

<table>
<thead>
<tr>
<th>Sediment Maintenance Depth* and Oil Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC Model</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>450i</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>3600</td>
</tr>
<tr>
<td>4800</td>
</tr>
<tr>
<td>6000</td>
</tr>
<tr>
<td>7200</td>
</tr>
<tr>
<td>11000</td>
</tr>
<tr>
<td>13000</td>
</tr>
<tr>
<td>16000</td>
</tr>
</tbody>
</table>

* based on 1.5% of the lower chamber volume

What conditions can compromise the Stormceptor System performance?

- If the system is not maintained regularly and fills with sediment and debris beyond the capacity indicated in Table 1, sediment removal efficiency may be reduced.
- If an oil spill(s) exceeds the oil capacity of the system, subsequent spills may not be captured.
- If debris clogs the inlet of the system, removal efficiency of sediment and hydrocarbons may be reduced.
- If a downstream blockage occurs, a backwater condition may occur in the system and removal efficiency of sediment and hydrocarbons may be reduced.

What training is required?

The Stormceptor System is inspected and maintained by professional vacuum cleaning service providers with experience in the maintenance of underground tanks, sewers and catch basins. For typical inspection and maintenance activities, no specific supplemental training is required for the Stormceptor System. Information provided in this document or the Stormceptor Operation and Maintenance Manual (provided to the system owner) contains sufficient guidance to maintain the system properly.

In unusual circumstances, such as if a damaged component needs replacement or some other condition requires manned entry into the vessel, confined space entry procedures must be followed. Only professional maintenance service providers trained in these procedures should enter the vessel. Service provider companies typically have personnel who are trained and certified in confined space entry procedures according to local, state, and federal standards.

What equipment is typically required for inspection?

- Manhole access cover lifting tool
- Oil dipstick
- Sediment probe
- Flashlight
- Camera
- Data log
- Safety cones and caution tape
- Hard hat, safety shoes, safety glasses, and chemical-resistant gloves

How is the Stormceptor System inspected?

- The Stormceptor System can be inspected through a standard surface manhole
access cover.
- Sediment and oil depth inspections are performed with a sediment probe and oil dipstick. Oil depth is measured through the oil inspection port. Sediment depth can be measured through the oil inspection port or exit riser pipe.
- Inspections also involve a visual inspection of the internal components of the system.

What equipment is typically required for maintenance?
- Vacuum truck equipped with water hose and jet nozzle
- Small pump and tubing for oil removal
- Manhole access cover lifting tool
- Oil dipstick
- Sediment probe
- Flashlight
- Camera
- Data log
- Safety cones and caution tape
- Hard hats, safety shoes, safety glasses, chemical-resistant gloves, and hearing protection for service providers
- Gas analyzer, respiratory gear, and safety harness for specially trained personnel if confined space entry is required

How is the Stormceptor System maintained?
- The Stormceptor System can be maintained through a standard surface manhole access cover.
- Insert the oil dipstick into the oil inspection port. If oil is present, pump off the oil layer into separate containment using a small pump and tubing.
- Maintenance cleaning of accumulated sediment is performed with a vacuum truck.
- For 6-ft diameter models and larger, the vacuum hose is inserted into the lower chamber via the 24-inch outlet riser pipe.
- For 4-ft diameter model, the removable drop tee is lifted out, and the vacuum hose is inserted into the lower chamber via the 12-inch drop tee hole.
- Using the vacuum hose, decant the water from the lower chamber to the sanitary sewer, if permitted by the local regulating authority, or into a separate containment tank.
- Remove the sludge from the bottom of the unit using the vacuum hose.
- Re-fill the lower chamber with water where required by the local jurisdiction.
- Units that have not been maintained regularly, have surpassed the maximum recommended sediment capacity, or contain damaged components may require manned entry by trained personnel using proper confined space entry procedures.

What is required for proper disposal?
- Disposal requirements for recovered pollutants may vary depending on local guidelines. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste.
What about oil spills?

- Petroleum-based pollutants captured by the Stormceptor system (oil/chemical/fuel spills) should be removed and disposed of by a licensed waste management company.
- Although Stormceptor captures virtually all free oil, a sheen at the outlet does not mean the unit isn’t working. A rainbow or sheen can be visible at oil concentrations of less than 10 mg/L (ppm).

What factors affect the costs involved with inspection/maintenance?

- Inspection and maintenance costs are based on unit size, sediment/oil/hazardous material loads, transportation distances, tipping fees, disposal requirements and other local regulations.

System schematic and component functions

Below is a schematic of the Stormceptor System with key components identified and their functions briefly described.

- **Manhole access cover** – provides access to the subsurface components
- **Precast reinforced concrete structure** – provides the vessel’s watertight structural support
- **Fiberglass insert** – separates vessel into upper and lower chambers
- **Weir** – directs incoming stormwater and oil spills into the lower treatment chamber
- **Orifice plate** – controls water flow rate into the lower treatment chamber and prevents scour of accumulated pollutants
- **Inlet drop tee** – conveys stormwater into the lower treatment chamber and splits flow into two opposite tangential streams
- **Fiberglass skirt** – provides double-wall containment of hydrocarbons
- **Outlet riser pipe** – conveys treated water to the upper chamber; primary vector access port for sediment removal
- **Oil inspection port** — primary access for measuring oil depth and oil removal
- **Safety grate** — safety measure to cover riser pipe in the event of manned entry into vessel

The Stormceptor System has no moving parts to wear out and therefore maintenance activities are generally focused on pollutant removal.

The depth of sediment can be measured from the surface by using a sediment probe or dipstick tube equipped with a ball check valve and inserted through the 24-inch outlet riser pipe. Oil level can similarly be checked through the oil inspection port.
A maintenance worker stationed on the surface uses a vacuum hose to evacuate water, sediment, and debris from the system.

Purchasing replacement parts
Since there are no moving parts in the Stormceptor System, broken, damaged, or worn parts are not typically encountered. However, if replacements parts are necessary, they may be obtained by contacting the following supplier of authentic Stormceptor components.

In New Jersey, contact:

Camtek Construction Products Corp.
3481 Treetline Drive
Murrysville, PA 15668
Phone: (724) 327-3400

The benefits of regular inspection and maintenance are many — from ensuring maximum operation efficiency, to keeping maintenance costs low, to the continued protection of natural waterways — and provide the key to Stormceptor's long and effective service life.
Stormwater Facility Maintenance Agreement

THIS AGREEMENT, made and entered into this ___ day of ____________, 2020, between Tower Hill Landings Annex, LLC, hereinafter called the "Operator", and the Rhode Island Department of Environmental Management, hereinafter called "RIDEM". WITNESSETH, that WHEREAS, the Operator of certain property described as the Proposed 11 Unit Residential Development, hereinafter called the "Property". WHEREAS, the Operator is proceeding to build on and develop the property; and WHEREAS, the Site Plan known as Tower Hill Landings Annex, hereinafter called the "Plan", which is expressly made a part hereof, as approved or to be approved by RIDEM, provides for water quality, recharge of stormwater and peak flow attenuation within the confines of the property; and WHEREAS, RIDEM and the operator, its successors and assigns, agree that the health, safety, and welfare of the residents of South Kingstown require that on-site stormwater management facilities be constructed and maintained on the Property; and WHEREAS, RIDEM requires that on-site stormwater management facilities as shown on the Plan be constructed and adequately maintained by the Operator, its successors and assigns. NOW, THEREFORE, in consideration of the foregoing premises, the mutual covenants contained herein, and the following terms and conditions, the parties hereto agree as follows:

1. The on-site stormwater management facilities shall be constructed by the Operator, its successors and assigns, in accordance with the plans and specifications identified in the Plan.

2. The Operator, its successors and assigns shall adequately maintain the stormwater management facilities in accordance with the required Operation and Maintenance Plan. This includes vegetation provided to control the quantity and quality of the stormwater. Adequate maintenance is herein defined as good working condition so that these facilities are performing their design functions. The Stormwater Best Management Practices Operation, Maintenance and Management Checklists are to be used to establish what good working condition is acceptable to RIDEM.

3. The Operator, its successors and assigns, shall inspect the stormwater management facility and retain on file an annual inspection report. The purpose of the inspection is to assure safe and proper functioning of the facilities. The inspection shall cover the entire facilities, catch basins, outlet structure, system areas, etc. Deficiencies shall be noted in the inspection report.

4. The Operator, its successors and assigns, hereby grant permission to RIDEM, its authorized agents and employees, to enter upon the Property and to inspect the stormwater management facilities whenever RIDEM deems necessary. The purpose of inspection is to follow-up on reported deficiencies and/or to respond to citizen complaints. RIDEM shall provide the Landowner, its successors and assigns, copies of the inspection findings and a directive to commence with the repairs if necessary.
5. In the event the Operator, its successors and assigns, fails to maintain the stormwater management facilities in good working condition acceptable to RIDEM, RIDEM may enter upon the Property and take whatever steps necessary to correct deficiencies identified in the inspection report and to charge the costs of such repairs to the Operator, its successors and assigns. This provision shall not be construed to allow RIDEM to erect any structure of permanent nature on the land of the Operator outside of the easement for the stormwater management facilities. It is expressly understood and agreed that RIDEM is under no obligation to routinely maintain or repair said facilities, and in no event shall this Agreement be construed to impose any such obligation on RIDEM.

6. The Operator, its successors and assigns, will perform the work necessary to keep these facilities in good working order as appropriate. In the event a maintenance schedule for the stormwater management facilities (including sediment removal) is outlined on the approved plans, the schedule will be followed.

7. In the event RIDEM pursuant to this Agreement, performs work of any nature, or expends any funds in performance of said work for labor, use of equipment, supplies, materials, and the like, the Landowner, its successors and assigns, shall reimburse the RIDEM upon demand, within thirty (30) days of receipt thereof for all actual costs incurred by RIDEM hereunder.

8. This Agreement imposes no liability of any kind whatsoever on RIDEM and the Operator agrees to hold the RIDEM harmless from any liability in the event the stormwater management facilities fail to operate properly.

9. This Agreement shall be recorded among the land records of South Kingstown and shall constitute a covenant running with the land, and shall be binding on the Operator, its administrators, executors, assigns, heirs and any other successors in interests.
WITNESS the following signatures and seals:

Company/Corporation/Partnership Name (Seal)

By: ___
(Type Name and Title)

The foregoing Agreement was acknowledged before me this ___ day of
______________, 20___, by

My Commission Expires: ____________
By: __
__
(Type Name and Title)

The foregoing Agreement was acknowledged before me this ___ day of
______________, 20___, by

NOTARY PUBLIC
My Commission Expires: ____________
Approved as to Form:
__
Attorney Date